q2-metnet: QIIME2 package to analyze 16S rRNA data via high-quality metabolic reconstructions of the human gut microbiota.

dc.centroFacultad de Medicinaes_ES
dc.contributor.authorBalzerani, Francesco
dc.contributor.authorBlasco, Telmo
dc.contributor.authorPérez-Burillo, Sergio
dc.contributor.authorFrancino, María Pilar
dc.contributor.authorRufián-Henares, José Ángel
dc.contributor.authorValcárcel, Luis V
dc.contributor.authorPlanes, Francisco Javier
dc.date.accessioned2025-05-15T10:57:52Z
dc.date.available2025-05-15T10:57:52Z
dc.date.issued2024-07-17
dc.departamentoFarmacología y Pediatríaes_ES
dc.description.abstractMotivation 16S rRNA gene sequencing is the most frequent approach for the characterization of the human gut microbiota. Despite different efforts in the literature, the inference of functional and metabolic interpretations from 16S rRNA gene sequencing data is still a challenging task. High-quality metabolic reconstructions of the human gut microbiota, such as AGORA and AGREDA, constitute a curated resource to improve functional inference from 16S rRNA data, but they are not typically integrated into standard bioinformatics tools. Results Here, we present q2-metnet, a QIIME2 plugin that enables the contextualization of 16S rRNA gene sequencing data into AGORA and AGREDA. In particular, based on relative abundances of taxa, q2-metnet determines normalized activity scores for the reactions and subsystems involved in the selected metabolic reconstruction. Using these scores, q2-metnet allows the user to conduct differential activity analysis for reactions and subsystems, as well as exploratory analysis using PCA and hierarchical clustering. We apply q2-metnet to a dataset from our group that involves 16S rRNA data from stool samples from lean, allergic to cow’s milk, obese and celiac children, and the Belgian Flemish Gut Flora Project cohort, which includes faecal 16S rRNA data from obese and normal-weight adult individuals. In the first case, q2-metnet outperforms existing algorithms in separating different clinical conditions based on predicted pathway abundances and subsystem scores. In the second case, q2-metnet complements competing approaches in predicting functional alterations in the gut microbiota of obese individuals. Overall, q2-metnet constitutes a powerful bioinformatics tool to provide metabolic context to 16S rRNA data from the human gut microbiota.es_ES
dc.identifier.citationBalzerani F, Blasco T, Pérez-Burillo S, Francino MP, Rufián-Henares JÁ, Valcarcel L, et al. q2-metnet: QIIME2 package to analyse 16S rRNA data via high-quality metabolic reconstructions of the human gut microbiota. Bioinformatics. 2024;40.es_ES
dc.identifier.doi10.1093/bioinformatics/btae455
dc.identifier.urihttps://hdl.handle.net/10630/38634
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiología computacionales_ES
dc.subjectBioinformáticaes_ES
dc.subjectFlora intestinales_ES
dc.subjectMetabolismo - Modelos matemáticoses_ES
dc.subject.otherQIIME2es_ES
dc.subject.otherQIIMEes_ES
dc.subject.otherMetabolic reconstructionses_ES
dc.subject.otherGut microbiotaes_ES
dc.subject.otherAGREDAes_ES
dc.subject.otherComputational biologyes_ES
dc.subject.otherBioinformaticses_ES
dc.subject.otherMicrobial metabolismes_ES
dc.titleq2-metnet: QIIME2 package to analyze 16S rRNA data via high-quality metabolic reconstructions of the human gut microbiota.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
51 q2_met_qiime.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado
Download

Description: Artículo publicado

Collections