Groups as automorphisms of dessins d’enfants

dc.centroFacultad de Cienciases_ES
dc.contributor.authorCañas Muñoz, Alejandro
dc.contributor.authorHidalgo, Rubén A.
dc.contributor.authorTuriel-Sandín, Francisco Javier
dc.contributor.authorViruel-Arbaizar, Antonio Ángel
dc.date.accessioned2022-09-01T10:06:56Z
dc.date.available2022-09-01T10:06:56Z
dc.date.issued2022-08-01
dc.departamentoÁlgebra, Geometría y Topología
dc.description.abstractIt is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin d’enfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realisable.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationCañas, A., Hidalgo, R.A., Turiel, F.J. et al. Groups as automorphisms of dessins d’enfants. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 160 (2022). https://doi.org/10.1007/s13398-022-01285-7es_ES
dc.identifier.doihttps://doi.org/10.1007/s13398-022-01285-7
dc.identifier.urihttps://hdl.handle.net/10630/24870
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAutomorfismoses_ES
dc.subject.otherAutomorphismses_ES
dc.subject.otherDessins d’enfantses_ES
dc.titleGroups as automorphisms of dessins d’enfantses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication2223c7b9-08af-47eb-afeb-26459c16621a
relation.isAuthorOfPublicationf6e0c760-be9e-4f50-912f-a3c626879ec9
relation.isAuthorOfPublication.latestForDiscovery2223c7b9-08af-47eb-afeb-26459c16621a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s13398-022-01285-7.pdf
Size:
249.39 KB
Format:
Adobe Portable Document Format
Description:

Collections