Groups as automorphisms of dessins d’enfants
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Cañas Muñoz, Alejandro | |
| dc.contributor.author | Hidalgo, Rubén A. | |
| dc.contributor.author | Turiel-Sandín, Francisco Javier | |
| dc.contributor.author | Viruel-Arbaizar, Antonio Ángel | |
| dc.date.accessioned | 2022-09-01T10:06:56Z | |
| dc.date.available | 2022-09-01T10:06:56Z | |
| dc.date.issued | 2022-08-01 | |
| dc.departamento | Álgebra, Geometría y Topología | |
| dc.description.abstract | It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin d’enfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realisable. | es_ES |
| dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA | es_ES |
| dc.identifier.citation | Cañas, A., Hidalgo, R.A., Turiel, F.J. et al. Groups as automorphisms of dessins d’enfants. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 160 (2022). https://doi.org/10.1007/s13398-022-01285-7 | es_ES |
| dc.identifier.doi | https://doi.org/10.1007/s13398-022-01285-7 | |
| dc.identifier.uri | https://hdl.handle.net/10630/24870 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights | Atribución 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Automorfismos | es_ES |
| dc.subject.other | Automorphisms | es_ES |
| dc.subject.other | Dessins d’enfants | es_ES |
| dc.title | Groups as automorphisms of dessins d’enfants | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 2223c7b9-08af-47eb-afeb-26459c16621a | |
| relation.isAuthorOfPublication | f6e0c760-be9e-4f50-912f-a3c626879ec9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 2223c7b9-08af-47eb-afeb-26459c16621a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- s13398-022-01285-7.pdf
- Size:
- 249.39 KB
- Format:
- Adobe Portable Document Format
- Description:

