Analysis and recognition of human gait activity based on multimodal sensors

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorTeran-Pineda, Diego
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorDomínguez-Merino, Enrique
dc.date.accessioned2023-06-15T07:55:32Z
dc.date.available2023-06-15T07:55:32Z
dc.date.created23-06-15
dc.date.issued2023-03-22
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractRemote health monitoring plays a significant role in research areas related to medicine, neurology, rehabilitation, and robotic systems. These applications include Human Activity Recognition (HAR) using wearable sensors, signal processing, mathematical methods, and machine learning to improve the accuracy of remote health monitoring systems. To improve the detection and accuracy of human activity recognition, we create a novel method to reduce the complexities of extracting features using the HuGaDB dataset. Our model extracts power spectra; due to the high dimensionality of features, sliding windows techniques are used to determine frequency bandwidth automatically, where an improved QRS algorithm selects the first dominant spectrum amplitude. In addition, the bandwidth algorithm has been used to reduce the dimensionality of data, remove redundant dimensions, and improve feature extraction. In this work, we have considered widely used machine learning classifiers. Our proposed method was evaluated using the accelerometer angles spectrum installed in six parts of the body and then reducing the bandwidth to know the evolution. Our approach attains an accuracy rate of 95.1% in the HuGaDB dataset with 70% of bandwidth, outperforming others in the human activity recognition accuracy.es_ES
dc.description.sponsorshipPartial funding for open access charge: Universidad de Málagaes_ES
dc.identifier.citationTeran-Pineda D, Thurnhofer-Hemsi K, Dominguez E. Analysis and Recognition of Human Gait Activity Based on Multimodal Sensors. Mathematics. 2023; 11(6):1538. https://doi.org/10.3390/math11061538es_ES
dc.identifier.doihttps://doi.org/10.3390/math11061538
dc.identifier.urihttps://hdl.handle.net/10630/26961
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMarcha atléticaes_ES
dc.subjectFisiología humanaes_ES
dc.subjectSensores biomédicoses_ES
dc.subject.otherMultimodal sensores_ES
dc.subject.otherMotion classificationes_ES
dc.subject.otherComputational intelligencees_ES
dc.subject.otherComplex feature extractiones_ES
dc.subject.otherActivity recognitiones_ES
dc.subject.otherQRS algorithmes_ES
dc.titleAnalysis and recognition of human gait activity based on multimodal sensorses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublication.latestForDiscoveryee99eb5a-8e94-462f-9bea-2da1832bedcf

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-11-01538.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format
Description:

Collections