High performance inference of gait recognition models on embedded systems.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorRuiz Barroso, Paula
dc.contributor.authorCastro, Francisco M.
dc.contributor.authorDelgado-Escaño, Rubén
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorGuil-Mata, Nicolás
dc.date.accessioned2025-05-13T11:00:10Z
dc.date.available2025-05-13T11:00:10Z
dc.date.issued2022
dc.departamentoArquitectura de Computadoreses_ES
dc.descriptionPolítica de acceso abierto tomada de: https://openpolicyfinder.jisc.ac.uk/id/publication/35887es_ES
dc.description.abstractEdge computing is gaining importance in the realm of Deep Learning, particularly after powerful devices such as recent heterogeneous embedded systems have demonstrated remarkable skills for accelerating their challenging computational requirements. In this work, we evaluate different hardware and software optimizations applied to state-of-the-art gait recognition approaches deployed on two Jetson devices with very different hardware capabilities. Specifically, we have selected three models with different characteristics in order to provide an in-depth deployment evaluation. This way, a 2D convolution-based model allows us to evaluate devices performance when a huge number of parameters must be managed. A model based on 3D convolutions is deployed to study devices capability to perform these kinds of operations. Finally, a novel model with a small number of parameters but with a huge number of activations is also evaluated. Obtained results show that different hardware and software optimizations are able to improve up to energy consumption and execution time w.r.t. baseline deployment, depending on the model and target device.1es_ES
dc.identifier.citationSustainable Computing: Informatics and Systems, 36, 100814.es_ES
dc.identifier.doi10.1016/j.suscom.2022.100814
dc.identifier.urihttps://hdl.handle.net/10630/38580
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiomecánicaes_ES
dc.subjectAprendizaje automáticoes_ES
dc.subject.otherEmbedded systemses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherGait recognitiones_ES
dc.subject.otherModel optimizationes_ES
dc.titleHigh performance inference of gait recognition models on embedded systems.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication046027b0-4274-40e8-b067-d162ba047b37
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscovery046027b0-4274-40e8-b067-d162ba047b37

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
high_performance_gait.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:

Collections