Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorRoé-Vellvé, Núria
dc.contributor.authorMolina-Cabello, Miguel Ángel
dc.date.accessioned2024-09-23T08:34:53Z
dc.date.available2024-09-23T08:34:53Z
dc.date.issued2020-05-20
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractIn medical imaging, the lack of high-quality images is present in many areas such as magnetic resonance (MR). Due to many acquisition impediments, the generated images have not enough resolution to carry out an adequate diagnosis. Image super-resolution (SR) is an ill-posed problem that tries to infer information from the image to enhance its resolution. Nowadays, deep learning techniques have become a powerful tool to extract features from images and infer new information. In MR, most of the recent works are based on the minimization of the errors between the input and the output images based on the Euclidean norm. This work presents a new methodology to perform three-dimensional SR based on the combination of Lp-norms in the loss layer. Two multiobjective optimization techniques are used to combine two cost functions. The proposed loss layers were trained with the SRCNN3D and DCSRN networks and tested with two MR structural T1-weighted datasets, and then compared with the traditional euclidean loss. Experimental results show significant differences in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Bhattacharyya Coefficient (BC), while the residual images show refined details.es_ES
dc.identifier.citationThurnhofer-Hemsi, K., Lopez-Rubio, E., Roe-Vellve, N., & Molina-Cabello, M. A. (2020). Multiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolution. Integrated Computer-Aided Engineering, 27(3), 233-251.es_ES
dc.identifier.doi10.3233/ICA-200620
dc.identifier.urihttps://hdl.handle.net/10630/32804
dc.language.isoenges_ES
dc.publisherIOS Presses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiagnóstico por imagenes_ES
dc.subject.otherSuper-resolutiones_ES
dc.subject.otherLp-normes_ES
dc.subject.otherMagnetic resonance imageses_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherMultiobjective optimizationes_ES
dc.titleMultiobjective optimization of deep neural networks with combinations of Lp-norm cost functions for 3D medical image super-resolutiones_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublicationbd8d08dc-ffee-4da1-9656-28204211eb1a
relation.isAuthorOfPublication.latestForDiscoveryae409266-06a3-4cd4-84e8-fb88d4976b3f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multiobjective_optimization_of_deep_neural_networks_with_combinations_of_Lp_norm.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Versión aceptada del artículo
Download

Description: Versión aceptada del artículo

Collections