Data mining for fuzzy diagnosis systems in LTE networks.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The recent developments in cellular networks, along with the increase in services, users and the demand of high quality have raised the Operational Expenditure (OPEX). Self-Organizing Networks (SON) are the solution to reduce these costs. Within SON, self-healing is the functionality that aims to automatically solve problems in the radio access network, at the same time reducing the downtime and the impact on the user experience. Self-healing comprises four main functions: fault detection, root cause analysis, fault compensation and recovery. To perform the root cause analysis (also known as diagnosis), Knowledge-Based Systems (KBS) are commonly used, such as fuzzy logic. In this paper, a novel method for extracting the Knowledge Base for a KBS from solved troubleshooting cases is proposed. This method is based on data mining techniques as opposed to the manual techniques currently used. The data mining problem of extracting knowledge out of LTE troubleshooting information can be considered a Big Data problem. Therefore, the proposed method has been designed so it can be easily scaled up to process a large volume of data with relatively low resources, as opposed to other existing algorithms. Tests show the feasibility and good results obtained by the diagnosis system created by the proposed methodology in LTE networks.

Description

Bibliographic citation

Khatib, E. J., Barco, R., Gómez-Andrades, A., Muñoz, P., & Serrano, I. (2015). Data mining for fuzzy diagnosis systems in LTE networks. Expert Systems with Applications, 42(21), 7549–7559.

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional