Reliable simulation-optimization of traffic lights in a real-world city.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Abstract

In smart cities, when the real-time control of traffic lights is not possible, the global optimization of traffic-light programs (TLPs) requires the simulation of a traffic scenario (traffic flows across the whole city) that is estimated after collecting data from sensors at the street level. However, the highly dynamic traffic of a city means that no single traffic scenario is a precise representation of the real system, and the fitness of any candidate solution (traffic-light program) will vary when deployed on the city. Thus, ideal TLPs should not only have an optimized fitness, but also a high reliability, i.e., low fitness variance, against the uncertainties of the real-world. Earlier traffic-light optimization methods, e.g., based on genetic algorithms, often simulate a single traffic scenario, which neglects variance in the real-world, leading to TLPs not optimized for reliability. Our main contributions in this work are the following: (a) the analysis of the importance of reliable solutions for TLP optimization, even when all traffic scenarios are consistent with the real-world data and highly correlated; (b) the adaptation of irace, an iterated racing algorithm that is able to dynamically adjust the number of traffic scenarios required to evaluate the fitness of TLPs and their reliability; (c) the use of a large real-world case study for which real-time control is not possible and where data was obtained from sensors at the street level; and (d) a thorough analysis of solutions generated by means of irace, a Genetic Algorithm, a Differential Evolution, a Particle Swarm Optimization and a Random Search. This analysis shows that simple strategies that simulate multiple traffic scenarios are able to obtain optimized solutions with improved reliability; however, the best results are obtained by irace, among the algorithms evaluated.

Description

Bibliographic citation

Ferrer, J., López-Ibáñez, M., Alba, E. Reliable simulation-optimization of traffic lights in a real-world city. Applied Soft Computing, 2019

Collections

Endorsement

Review

Supplemented By

Referenced by