TraTSA: A Transprecision Framework for Efficient Time Series Analysis
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Center
Department/Institute
Keywords
Abstract
Time series analysis (TSA) comprises methods for extracting information in domains as diverse as medicine, seismology, speech recognition and economics. Matrix Profile (MP) is the state-of-the-art TSA technique, which provides the most similar neighbor to each subsequence of the time series. However, this computation requires a huge amount of floating-point (FP) operations, which are a major contributor ( 50%) to the energy consumption in modern computing platforms. In this sense, Transprecision Computing has recently emerged as a promising approach to improve energy efficiency and performance by using fewer bits in FP operations while providing accurate results.
In this work, we present TraTSA, the first transprecision framework for efficient time series analysis based on MP. TraTSA allows the user to deploy a high-performance and energy-efficient computing solution with the exact precision required by the TSA application. To this end, we first propose implementations of TraTSA for both commodity CPU and FPGA platforms. Second, we propose an accuracy metric to compare the results with the double-precision MP. Third, we study MP’s accuracy when using a transprecision approach. Finally, our evaluation shows that, while obtaining results accurate enough, the FPGA transprecision MP (i) is 22.75 faster than a 72-core server, and (ii) the energy consumption is up to 3.3 lower than the double-precision executions.
Description
Bibliographic citation
Ivan Fernandez, Ricardo Quislant, Sonia Gonzalez-Navarro, Eladio Gutierrez, Oscar Plata, TraTSA: A Transprecision Framework for Efficient Time Series Analysis, Journal of Computational Science, Volume 63, 2022, 101784, ISSN 1877-7503, https://doi.org/10.1016/j.jocs.2022.101784
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional














