Federated Learning Meets Blockchain: A Kafka-ML Integration for reliable model training using data streams

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMartín-Fernández, Cristian
dc.contributor.authorChaves, Antonio
dc.contributor.authorDíaz-Rodríguez, Manuel
dc.contributor.authorShahid, Adnan
dc.contributor.authorSKIm, Kwang Soon
dc.date.accessioned2025-01-24T13:26:36Z
dc.date.available2025-01-24T13:26:36Z
dc.date.issued2024
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractMachine learning data privacy has been improved with Federated Learning approaches. However, some obstacles to guaranteeing traceability, openness, and participant contribution incentives prevent its widespread use. In this study, Ethereum blockchain technology is integrated into the data stream Kafka-ML framework, presenting a novel asynchronous and blockchain-based Federated Learning approach. By utilising Ethereum for transparent and auditable participant tracking, this integration overcomes some shortcomings such as auditability and model sharing reliability. Furthermore, Ethereum smart contracts allow for automatic reward distribution systems, which promote equitable incentive systems and increased involvement in the Federated Learning process. To demonstrate its potential, an extensive evaluation has been carried out on a wireless network technology detection use case. By improving transparency, traceability, and incentive structures of Federated Learning, it is expected to strengthen the robustness of flexible machine learning collaboration with data streams.es_ES
dc.identifier.citationChaves, A. J., Martín, C., Kim, K. S., Shahid, A., & Díaz, M. (2024, December). Federated Learning Meets Blockchain: A Kafka-ML Integration for reliable model training using data streams. In 2024 IEEE International Conference on Big Data (BigData) (pp. 7677-7686). IEEE.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/36952
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.eventdate15/12/2024es_ES
dc.relation.eventplaceWashington DC, USAes_ES
dc.relation.eventtitle2024 IEEE International Conference on Big Data (BigData)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDatos masivoses_ES
dc.subject.otherData streamses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherFederated learninges_ES
dc.subject.otherBlockchaines_ES
dc.titleFederated Learning Meets Blockchain: A Kafka-ML Integration for reliable model training using data streamses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbf2870d3-5cc6-414d-8d71-60e242c18554
relation.isAuthorOfPublication87398907-4bbf-4287-8d0b-e2c84852c57f
relation.isAuthorOfPublication.latestForDiscoverybf2870d3-5cc6-414d-8d71-60e242c18554

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SP10229_9084.pdf
Size:
839.46 KB
Format:
Adobe Portable Document Format
Description:
Preprint
Download

Description: Preprint