Early hydration study of standard and doped Alite-Belite-Ye’elimite (ABY) cements through Synchrotron Radiation

Loading...
Thumbnail Image

Files

abstract-epdic16-Jesus David Zea Garcia.pdf (133.95 KB)

Description: Resumen, añadido al objeto enviado al congreso (Póster).

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Keywords

Abstract

The manufacturing of ye'elimite-rich cements releases from 15 to 37%, depending on their composition, less CO2 to the atmosphere than ordinary Portland cement (OPC). BYF cements containing belite, ye’elimite and ferrite as main crystalline phases, are promising eco-friendly binders. Nevertheless, belite, its main phase, shows a slow hydrating behaviour and the mechanical strengths are lower than OPC at early ages. Some alternatives to solve this problem are: i) forming alite jointly with belite and ye’elimite during clinkering, Alite Belite Ye’elimite (ABY) clinkers. The hydration of alite and ye’elimite would develop high mechanical strengths at early ages, and belite contributes to later curing times; ii) a second alternative is the stabilisation of alpha forms of belite using dopants such as boron named here after dABY. In this work, two different types of ABY clinkers (standard and doped) have been prepared and characterized to understand their different hydration mechanisms at the same water-to-cement (w/c) ratio. The clinkers have been prepared using CaF2 and ZnO as mineralizers, and borax as dopant agent to stabilize alpha forms of belite (’H-C2S). Afterwards, 14 wt% of anhydrite (as soluble sulphate source) was added to prepare the corresponding cements. Finally, the hydration study was performed at w/c ratio of 0.5. Here, an in-situ hydration study using synchrotron X-ray powder diffraction (SXRPD) for the first 14 hours of hydration is reported. Moreover, these results will be combined with the ex-situ laboratory X-ray powder diffraction study (LXRPD) at 1 day of hydration and calorimetric results. Rietveld quantitative phase analysis has been used to establish the phase evolution across the time.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional