A scheduling theory framework for GPU tasks efficient execution
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Center
Department/Institute
Abstract
Concurrent execution of tasks in GPUs can reduce the computation time of a workload by
overlapping data transfer and execution commands.
However it is difficult to implement an efficient run-
time scheduler that minimizes the workload makespan
as many execution orderings should be evaluated. In
this paper, we employ scheduling theory to build a
model that takes into account the device capabili-
ties, workload characteristics, constraints and objec-
tive functions. In our model, GPU tasks schedul-
ing is reformulated as a flow shop scheduling prob-
lem, which allow us to apply and compare well known
methods already developed in the operations research
field. In addition we develop a new heuristic, specif-
ically focused on executing GPU commands, that
achieves better scheduling results than previous tech-
niques. Finally, a comprehensive evaluation, showing
the suitability and robustness of this new approach,
is conducted in three different NVIDIA architectures
(Kepler, Maxwell and Pascal).
Description
Bibliographic citation
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










