A scheduling theory framework for GPU tasks efficient execution

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Concurrent execution of tasks in GPUs can reduce the computation time of a workload by overlapping data transfer and execution commands. However it is difficult to implement an efficient run- time scheduler that minimizes the workload makespan as many execution orderings should be evaluated. In this paper, we employ scheduling theory to build a model that takes into account the device capabili- ties, workload characteristics, constraints and objec- tive functions. In our model, GPU tasks schedul- ing is reformulated as a flow shop scheduling prob- lem, which allow us to apply and compare well known methods already developed in the operations research field. In addition we develop a new heuristic, specif- ically focused on executing GPU commands, that achieves better scheduling results than previous tech- niques. Finally, a comprehensive evaluation, showing the suitability and robustness of this new approach, is conducted in three different NVIDIA architectures (Kepler, Maxwell and Pascal).

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional