Effective anytime algorithm for multiobjective combinatorial optimization problems

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorDomínguez-Ríos, Miguel Ángel
dc.contributor.authorAlba-Torres, Enrique
dc.contributor.authorChicano-García, José-Francisco
dc.date.accessioned2021-12-21T12:41:35Z
dc.date.available2021-12-21T12:41:35Z
dc.date.created2021-12-09
dc.date.issued2021-07
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractIn multiobjective optimization, the result of an optimization algorithm is a set of efficient solutions from which the decision maker selects one. It is common that not all the efficient solutions can be computed in a short time and the search algorithm has to be stopped prematurely to analyze the solutions found so far. A set of efficient solutions that are well-spread in the objective space is preferred to provide the decision maker with a great variety of solutions. However, just a few exact algorithms in the literature exist with the ability to provide such a well-spread set of solutions at any moment: we call them anytime algorithms. We propose a new exact anytime algorithm for multiobjective combinatorial optimization combining three novel ideas to enhance the anytime behavior. We compare the proposed algorithm with those in the state-of-the-art for anytime multiobjective combinatorial optimization using a set of 480 instances from different well-known benchmarks and four different performance measures: the overall non-dominated vector generation ratio, the hypervolume, the general spread and the additive epsilon indicator. A comprehensive experimental study reveals that our proposal outperforms the previous algorithms in most of the instances.es_ES
dc.description.sponsorshipThis research has been partially funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) under contract TIN2017-88213-R (6city project), the European Research Council under contract H2020-ICT-2019-3 (TAILOR project), the University of Málaga, Consejería de Economía y Conocimiento de la Junta de Andalucía and FEDER under contract UMA18-FEDERJA-003 (PRECOG project), the Ministry of Science, Innovation and Universities and FEDER under contract RTC-2017-6714-5, and the University of Málaga under contract PPIT.UMA.B1.2017/07 (EXHAURO Project).es_ES
dc.identifier.citationMiguel Ángel Domínguez-Ríos, Francisco Chicano, Enrique Alba, "Effective anytime algorithm for multiobjective combinatorial optimization problems", Information Sciences 565: 210-228 (2021).es_ES
dc.identifier.doihttps://doi.org/10.1016/j.ins.2021.02.074.
dc.identifier.urihttps://hdl.handle.net/10630/23501
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAlgoritmoses_ES
dc.subject.otherOptimización combinatoria multiobjetivoes_ES
dc.subject.otherAlgoritmo en cualquier momentoes_ES
dc.subject.otherPuntos no dominados bien distribuidoses_ES
dc.titleEffective anytime algorithm for multiobjective combinatorial optimization problemses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublication.latestForDiscoverye8596ab5-92f0-420d-a394-17d128c965da

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0020025521002310-main-6.pdf
Size:
989.68 KB
Format:
Adobe Portable Document Format
Description:
Versión publicada con licencia Creative Commons
Download

Description: Versión publicada con licencia Creative Commons

Collections