Performance assessment of population-based multiobjective optimization algorithms using composite indicators

dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.contributor.authorSaborido Infantes, Rubén
dc.contributor.authorRuiz, Ana B.
dc.contributor.authorGonzález-Gallardo, Sandra
dc.contributor.authorLuque-Gallego, Mariano
dc.contributor.authorBorrego-Ortega, Antonio
dc.date.accessioned2025-07-22T11:30:49Z
dc.date.available2025-07-22T11:30:49Z
dc.date.issued2025-02
dc.departamentoEconomía Aplicada (Matemáticas)es_ES
dc.description.abstractThe performance of population-based multiobjective optimization algorithms is usually evaluated using indicators assessing the quality of the approximation set generated according to convergence, cardinality, spread, and uniformity (the combination of the last two known as diversity). Since not all quality indicators can capture all these properties, we propose to aggregate already-existing indicators into a single measure informing about the algorithm’s performance from a general perspective. To synthesize the desired quality indicators, we build three composite quality indicators (weak, strong, and mixed) based on the reference point approach. This approach enables the use of desirable value ranges for the aggregated quality indicators, defined by aspiration and reservation levels, that allow knowing which algorithms perform better, within, or worse than the desired limits. Each of the composite quality indicators proposed enables a different compensation degree among the aggregated indicators, and their joint use permits a deep insight into the algorithms’ performance. In addition, we show that the weak and mixed composite indicators are Pareto-compliant, and the strong one is weakly Pareto-compliant if at least one of the aggregated indicators is Pareto-compliant. Finally, we demonstrate the benefits of our proposal when comparing many population-based algorithms on three-, five-, and eight-objective optimization problems.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga/CBUA.es_ES
dc.identifier.citationR. Saborido, A. B. Ruiz, S. González-Gallardo, M. Luque and A. Borrego, "Performance Assessment of Population-Based Multiobjective Optimization Algorithms Using Composite Indicators," in IEEE Transactions on Evolutionary Computation, doi: 10.1109/TEVC.2025.3544412es_ES
dc.identifier.doi10.1109/TEVC.2025.3544412
dc.identifier.urihttps://hdl.handle.net/10630/39444
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.projectIDSpanish Ministry of Science and Innovation (project PID2020-115429GB-I00)es_ES
dc.relation.projectIDAndalusian Regional Ministry of Economy, Knowledge, Business and University (PAI group SEJ-532)es_ES
dc.relation.projectIDProject PROPLANET (HORIZON-CL4-2022-RESILIENCE- 01-23)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOptimización matemáticaes_ES
dc.subject.otherQuality performance indicatorses_ES
dc.subject.otherComposite indicatorses_ES
dc.subject.otherPopulation-based multiobjective optimization algorithmses_ES
dc.subject.otherAspiration and reservation levelses_ES
dc.titlePerformance assessment of population-based multiobjective optimization algorithms using composite indicatorses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication39347849-2655-4c96-b184-737a7a0673f2
relation.isAuthorOfPublication.latestForDiscovery39347849-2655-4c96-b184-737a7a0673f2

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Performance_Assessment_of_Population-Based_Multiobjective_Optimization_Algorithms_Using_Composite_Indicators.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format
Description:

Collections