Comparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellitus

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorAguilera-Venegas, Gabriel
dc.contributor.authorLópez-Molina, Amador
dc.contributor.authorRojo-Martínez, Gemma
dc.contributor.authorGalán-García, José Luis
dc.date.accessioned2023-05-10T07:24:03Z
dc.date.available2023-05-10T07:24:03Z
dc.date.created2023
dc.date.issued2023
dc.departamentoMatemática Aplicada
dc.description.abstractThe main goals of this work are to study and compare machine learning algorithms to predict the development of type 2 diabetes mellitus. Four classification algorithms have been considered, studying and comparing the accuracy of each one to predict the incidence of type 2 diabetes mellitus seven and a half years in advance. Specifically, the techniques studied are: Decision Tree, Random Forest, kNN (k-Nearest Neighbours) and Neural Networks. The study not only involves the comparison among these techniques, but also, the tuning of the hyperparameters of each algorithm. The algorithms have been implemented using the language R. The data base used has been obtained from the nation-wide cohort di@bet.es study. This work includes the accuracy of each algorithm and therefore the best technique for this problem. The best hyperparameters for each algorithm will be also provided.es_ES
dc.description.sponsorshipThis work was partially supported by the Ministerio de Sanidad, Servicios Sociales e Igualdad-ISCIII, Instituto de Salud Carlos III (PI20/01322), European Regional Development Fund (ERDF) ‘‘A way to build Europe’’. Funding for open access charge: Universidad de Málaga/CBUA. We thank the anonymous reviewers for their useful suggestions and corrections which have improved the quality of the paper.es_ES
dc.identifier.citationAguilera-Venegas, López-Molina, A., Rojo-Martínez, G., & Galán-García, J. L. (2023). Comparing and tuning machine learning algorithms to predict type 2 diabetes mellitus. Journal of Computational and Applied Mathematics, 427. https://doi.org/10.1016/j.cam.2023.115115es_ES
dc.identifier.doihttps://doi.org/10.1016/j.cam.2023.115115
dc.identifier.urihttps://hdl.handle.net/10630/26536
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiabeteses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectInteligencia artificiales_ES
dc.subject.otherType 2 diabetes mellituses_ES
dc.subject.otherMachine learninges_ES
dc.subject.otherDecision Treeses_ES
dc.subject.otherRandom Forestes_ES
dc.subject.otherkNNes_ES
dc.subject.otherNeural Networkses_ES
dc.titleComparing and Tuning Machine Learning Algorithms to Predict Type 2 Diabetes Mellituses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationb8e4e5c3-9226-4734-a450-88066d32b609
relation.isAuthorOfPublication6b4fec90-894d-4819-9029-f57a357d908e
relation.isAuthorOfPublication.latestForDiscoveryb8e4e5c3-9226-4734-a450-88066d32b609

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0377042723000596-main.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
Description:

Collections