Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi.
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Inter-Research Science Publisher
Share
Center
Department/Institute
Keywords
Abstract
We exposed a natural phytoplankton community to combined present (390 µatm, low carbon [LC]) and future CO2 levels predicted for the year 2100 (900 µatm, high carbon [HC]), and ambient (4.5 nM, -DFB [desferoxamine B]) and high (12 nM, +DFB) dissolved iron (dFe) levels, for 25 d in mesocosms. We report on the physiological response of the community dominated by the coccolithophore Emiliania huxleyi. The community structure shifted on Day 10, leading to 2 different phases (1 and 2), i.e. before and after Day 10, respectively. We focussed on the massive bloom of E. huxleyi that developed in Phase 2, in the LC+DFB treatment. In high dFe conditions, pigments and photosynthetic parameters increased compared to the control (LC-DFB). Cell death was only detected during the community shift (Days 10-12) and mostly increased in the presence of high CO2. The accumulation of reactive oxygen species (ROS) decreased under high dFe, pointing to an efficient, rather than a stressed, metabolism. DNA lesions, caused by excess irradiance, were minimised under high Fe. E. huxleyi is known for its low Fe requirements for growth. However, we demonstrate that Fe is essential to E. huxleyi for DNA repair and ROS management, and to maintain optimal functioning of the photosynthetic machinery, with implications for carbon cycling and future ecosystem functioning.
Description
https://openpolicyfinder.jisc.ac.uk/id/publication/13299
Bibliographic citation
Segovia M, Lorenzo MR, Iñiguez C, García-Gómez C (2018) Physiological stress response associated with elevated CO2 and dissolved iron in a phytoplankton community dominated by the coccolithophore Emiliania huxleyi. Mar Ecol Prog Ser 586:73-89. https://doi.org/10.3354/meps12389
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










