Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Baglietto-Vargas, David
Chen, Yuncai
Suh, Dongjin
Ager, Rahasson
Rodriguez-Ortiz, Carlos
Medeiros, Rodrigo
Myczek, Kristoffer
Green, Kim N
Baram, Tallie
LaFerla, Frank

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Abstract

Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and other cognitive functions in the elderly. The social and financial impacts of AD are overwhelming and are escalating exponentially as a result of population aging. Therefore, identifying AD-related risk factors and the development of more efficacious therapeutic approaches are critical to cure this neurological disorder. Current epidemiological evidence indicates that life experiences, including chronic stress, are a risk for AD. However, it is unknown if short-term stress, lasting for hours, influences the onset or progression of AD. Here, we determined the effect of short-term, multi-modal ‘modern life-like’ stress on AD pathogenesis and synaptic plasticity in mice bearing three AD mutations (the 3xTg-AD mouse model). We found that combined emotional and physical stress lasting 5 h severely impaired memory in wild-type mice and tended to impact it in already low-performing 3xTg-AD mice. This stress reduced the number of synapse-bearing dendritic spines in 3xTg-AD mice and increased Aβ levels by augmenting AβPP processing. Thus, short-term stress simulating modern-life conditions may exacerbate cognitive deficits in preclinical AD by accelerating amyloid pathology and reducing synapse numbers.

Description

Bibliographic citation

Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, Myczek K, Green KN, Baram TZ, LaFerla FM. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J Neurochem. 2015 Sep;134(5):915-26. doi: 10.1111/jnc.13195. Epub 2015 Jul 14. PMID: 26077803; PMCID: PMC4792118.

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional