Vehicle Classification in Traffic Environments Using the Growing Neural Gas

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorMolina-Cabello, Miguel Ángel
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.contributor.authorLópez-Rubio, Ezequiel
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan Miguel
dc.contributor.authorDomínguez-Merino, Enrique
dc.contributor.authorMuñoz Pérez, José
dc.date.accessioned2017-06-20T09:54:10Z
dc.date.available2017-06-20T09:54:10Z
dc.date.issued2017
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractTraffic monitoring is one of the most popular applications of automated video surveillance. Classification of the vehicles into types is important in order to provide the human traffic controllers with updated information about the characteristics of the traffic flow, which facilitates their decision making process. In this work, a video surveillance system is proposed to carry out such classification. First of all, a feature extraction process is carried out to obtain the most significant features of the detected vehicles. After that, a set of Growing Neural Gas neural networks is employed to determine their types. A qualitative and quantitative assessment of the proposal is carried out on a set of benchmark traffic video sequences, with favorable results.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.citationI. Rojas et al. (Eds.): IWANN 2017, Part II, LNCS 10306, pp. 225–234, 2017. DOI: 10.1007/978-3-319-59147-6 20es_ES
dc.identifier.orcidhttp://orcid.org/0000-0001-8231-5687es_ES
dc.identifier.urihttp://hdl.handle.net/10630/13945
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdateJunio 2017es_ES
dc.relation.eventplaceCádiz, Españaes_ES
dc.relation.eventtitleInternational Work-Conference on Artificial Neural Networks 2017es_ES
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherForeground detectiones_ES
dc.subject.otherBackground modelinges_ES
dc.subject.otherProbabilistic self-organizing mapses_ES
dc.subject.otherBackground featureses_ES
dc.titleVehicle Classification in Traffic Environments Using the Growing Neural Gases_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbd8d08dc-ffee-4da1-9656-28204211eb1a
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublicationae409266-06a3-4cd4-84e8-fb88d4976b3f
relation.isAuthorOfPublication5d96d5b2-9546-44c8-a1b3-1044a3aee34f
relation.isAuthorOfPublicationee99eb5a-8e94-462f-9bea-2da1832bedcf
relation.isAuthorOfPublication.latestForDiscoverybd8d08dc-ffee-4da1-9656-28204211eb1a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LNCS10306ArticuloA.pdf
Size:
615.07 KB
Format:
Adobe Portable Document Format