Context-Equivalence of Algebras with Involutions.
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Smirnov, Oleg | |
| dc.date.accessioned | 2023-10-24T08:40:41Z | |
| dc.date.available | 2023-10-24T08:40:41Z | |
| dc.date.created | 2023-10-24 | |
| dc.date.issued | 2023 | |
| dc.departamento | Álgebra, Geometría y Topología | |
| dc.description | Conferencia Científica | es_ES |
| dc.description.abstract | Morita equivalence is the central concept of celebrated Morita theory. Two algebras are Morita equivalent if their categories of modules are equivalent. A Morita context is a useful technical concept that allows one to establish Morita equivalence. Based on this concept B. Muller introduced the notion of context-equivalence in 1972. Later S. A. Amitsur showed that although the context-equivalence is coarser than Morita equivalence, many algebraic properties are still invariant relative to this new equivalence. In this talk we will we will present a version of context-equivalence suitable for the category of algebras with involution. The main result is a criterion of context-equivalence of such algebras. | es_ES |
| dc.description.sponsorship | Departamento de Álgebra, Geometría y Topología. Facultad de Ciencias, Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/27895 | |
| dc.language.iso | eng | es_ES |
| dc.relation.eventdate | 27 de octubre de 2023 | es_ES |
| dc.relation.eventplace | Málaga | es_ES |
| dc.relation.eventtitle | Conferencia | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Algebra | es_ES |
| dc.subject.other | Morita context | es_ES |
| dc.subject.other | Involution | es_ES |
| dc.title | Context-Equivalence of Algebras with Involutions. | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Conferencia Científica.pdf
- Size:
- 94.15 KB
- Format:
- Adobe Portable Document Format
- Description:

