Largest eigenvalue distribution of noncircularly symmetric Wishart-type matrices with application to Hoyt-faded MIMO communications

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorMoreno-Pozas, Laureano
dc.contributor.authorMorales-Jimenez, David
dc.contributor.authorMckay, Matthew R.
dc.contributor.authorMartos-Naya, Eduardo
dc.date.accessioned2024-10-01T11:50:02Z
dc.date.available2024-10-01T11:50:02Z
dc.date.issued2018-03
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractThis paper is concerned with the largest eigenvalue of the Wishart-type random matrix W = XX† (or W = X†X), where X is a complex Gaussian matrix with unequal variances in the real and imaginary parts of its entries, i.e., X belongs to the noncircularly symmetric Gaussian subclass. By establishing a novel connection with the well-known complex Wishart ensemble, we here derive exact and asymptotic expressions for the largest eigenvalue distribution of W, which provide new insights on the effect of the real-imaginary variance imbalance of the entries of X. These new results are then leveraged to analyze the outage performance of multiantenna systems with maximal ratio combining subject to Nakagami-q (Hoyt) fading.es_ES
dc.identifier.citationL. Moreno-Pozas, D. Morales-Jimenez, M. R. McKay and E. Martos-Naya, "Largest Eigenvalue Distribution of Noncircularly Symmetric Wishart-Type Matrices With Application to Hoyt-Faded MIMO Communications," in IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2756-2760, March 2018.es_ES
dc.identifier.doi10.1109/TVT.2017.2737718
dc.identifier.urihttps://hdl.handle.net/10630/34147
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.relation.ispartofseriesIEEE Transactions on Vehicular Technology;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProgramación lineales_ES
dc.subjectCircuitos electrónicoses_ES
dc.subject.otherEigenvalues and eigenfunctionses_ES
dc.subject.otherMIMOes_ES
dc.subject.otherLinear matrix inequalitieses_ES
dc.subject.otherRayleigh channelses_ES
dc.subject.otherReceiving antennases_ES
dc.subject.otherDiversity receptiones_ES
dc.subject.otherNakagami distributiones_ES
dc.subject.otherPerformance analysises_ES
dc.subject.otherRayleigh channelses_ES
dc.subject.otherRician channelses_ES
dc.titleLargest eigenvalue distribution of noncircularly symmetric Wishart-type matrices with application to Hoyt-faded MIMO communicationses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5bfebd33-c943-4c81-84fd-ed9c1617805c
relation.isAuthorOfPublicationd1039a04-a518-4e2f-98fb-b666163fc459
relation.isAuthorOfPublication.latestForDiscovery5bfebd33-c943-4c81-84fd-ed9c1617805c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Largest_Eigenvalue_Distribution_of_Noncircularly_Symmetric_Wishart-Type_Matrices_With_Application_to_Hoyt-Faded_MIMO_Communications.pdf
Size:
185.7 KB
Format:
Adobe Portable Document Format
Description:

Collections