A Bayesian Solution to the Behrens-Fisher problem
| dc.centro | Facultad de Ciencias | es_ES |
| dc.contributor.author | Girón González-Torre, F. Javier | |
| dc.contributor.author | Castillo-Vázquez, Carmen | |
| dc.date.accessioned | 2022-03-10T13:19:18Z | |
| dc.date.available | 2022-03-10T13:19:18Z | |
| dc.date.created | 2021 | |
| dc.date.issued | 2021-07 | |
| dc.departamento | Análisis Matemático, Estadística e Investigación Operativa y Matemática Aplicada | |
| dc.description.abstract | A simple solution to the Behrens–Fisher problem based on Bayes factors is presented, and its relation with the Behrens–Fisher distribution is explored. The construction of the Bayes factor is based on a simple hierarchical model, and has a closed form based on the densities of general Behrens–Fisher distributions. Simple asymptotic approximations of the Bayes factor, which are functions of the Kullback–Leibler divergence between normal distributions, are given, and it is also proved to be consistent. Some examples and comparisons are also presented. | es_ES |
| dc.description.sponsorship | Open access funding provided by Universidad de Málaga/CBUA. | es_ES |
| dc.identifier.citation | Girón, F. J., & del Castillo, C. (2021). A Bayesian solution to the Behrens–Fisher problem. Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 115(4). https://doi.org/10.1007/s13398-021-01098-0 | es_ES |
| dc.identifier.doi | 10.1007/s13398-021-01098-0 | |
| dc.identifier.uri | https://hdl.handle.net/10630/23852 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Modelos matemáticos | es_ES |
| dc.subject.other | Behrens-Fisher problem | es_ES |
| dc.subject.other | Bayes factor | es_ES |
| dc.subject.other | Hierarchical models | es_ES |
| dc.title | A Bayesian Solution to the Behrens-Fisher problem | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 06c948bd-c132-482d-b149-716e136aae57 | |
| relation.isAuthorOfPublication.latestForDiscovery | 06c948bd-c132-482d-b149-716e136aae57 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2021-RACSAM 2021.pdf
- Size:
- 365.76 KB
- Format:
- Adobe Portable Document Format
- Description:

