Flexible and low-cost binderless capacitors based on p- and n-containing fibrous activated carbons from denim cloth wastes

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Activated carbon cloths have been prepared from denim cloth wastes (DCWs) through chemical activation with H3PO4. The effect of the H3PO4/DCWs impregnation ratio and the carbonization temperature on the porous texture, the chemical composition, the fibers morphology, and the electrochemical performance has been studied. Low H3PO4/DCWs impregnation ratios lead to flexible and microporous activated carbons cloths, whereas more fragile and rigid activated carbon cloths with higher external surface area are produced upon increasing the amount of H3PO4. The increase in the carbonization temperature allows for obtaining a more ordered and conductive carbon structure. The activated carbon prepared at 900 ºC with a H3PO4/DCWs impregnation ratio of 0.5 (w/w) exhibits the best performance as electric double layer capacitor. This electrode shows a specific surface area of 2016 m2 g-1 and the highest registered gravimetric capacitance (227 F g-1). Moreover, its flexibility minimizes the ohmic resistance of the electrode, thus increasing the feasibility of working at higher current densities than the other synthesized electrodes.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by