Evaluating the Impact of Hysteretic Phenomena and Implementation Choices on Energy Consumption in Evolutionary Algorithms.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCotta-Porras, Carlos
dc.contributor.authorMartínez-Cruz, Jesús
dc.date.accessioned2025-04-24T09:12:32Z
dc.date.available2025-04-24T09:12:32Z
dc.date.issued2025-04-17
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málagaes_ES
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.descriptionAssociated research data: Cotta, C., & Martínez-Cruz, J. (2025, February 27). Rundata on EA Energy Consumption: Hysteresis. Retrieved from osf.io/xd54ues_ES
dc.description.abstractAs the demand for environmentally sustainable computing grows, understanding the energy consumption of AI systems has become increasingly important. This paper explores how hysteretic phenomena and implementation choices affect the energy consumption of evolutionary algorithms (EAs). Specifically, we consider the case of running EAs in batch and show how back-to-back executions can put a significant strain on the underlying processing device, resulting in increased energy consumption. An experimental analysis indicates that the introduction of short pauses can alleviate this problem and reduce consumption by up to 9% in the considered benchmark. We also conduct a comparative analysis between two twin implementations of the same EA library in Java and C++, revealing that the latter scales better in terms of energy efficiency and running time, thus underpinning the importance of implementation decisions and best practices when aiming to optimize an algorithm’s energy consumption.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovationes_ES
dc.identifier.doi10.1007/978-3-031-90065-5_14
dc.identifier.urihttps://hdl.handle.net/10630/38473
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relation.eventdateApril 2025es_ES
dc.relation.eventplaceTrieste, Italyes_ES
dc.relation.eventtitle28th International Conference on the Applications of Evolutionary Computationes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/AEI/10.13039/501100011033/PID2021-125184NB-I00es_ES
dc.rights.accessRightsembargoed accesses_ES
dc.subjectAlgoritmos evolutivoses_ES
dc.subjectTecnología limpiaes_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherEnergy consumptiones_ES
dc.subject.otherGreen AIes_ES
dc.subject.otherSustainable computinges_ES
dc.titleEvaluating the Impact of Hysteretic Phenomena and Implementation Choices on Energy Consumption in Evolutionary Algorithms.es_ES
dc.typeconference outputes_ES
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication30d4b05d-dc2a-44c0-bc14-88fb05728f50
relation.isAuthorOfPublicationb942776a-ad5a-49ae-bd12-f2dec2b8ceba
relation.isAuthorOfPublication.latestForDiscovery30d4b05d-dc2a-44c0-bc14-88fb05728f50

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
evostar2025.pdf
Size:
613.18 KB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal