A Study on Multimemetic Estimation of Distribution Algorithms

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNogueras, Rafael
dc.contributor.authorCotta-Porras, Carlos
dc.date.accessioned2014-09-23T08:26:04Z
dc.date.available2014-09-23T08:26:04Z
dc.date.created2014
dc.date.issued2014-09-23
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionPPSN 2014, LNCS 8672, pp. 322-331es_ES
dc.description.abstractMultimemetic algorithms (MMAs) are memetic algorithms in which memes (interpreted as non-genetic expressions of problem solving strategies) are explicitly represented and evolved alongside genotypes. This process is commonly approached using the standard genetic procedures of recombination and mutation to manipulate directly information at the memetic level. We consider an alternative approach based on the use of estimation of distribution algorithms to carry on this self-adaptive memetic optimization process. We study the application of different EDAs to this end, and provide an extensive experimental evaluation. It is shown that elitism is essential to achieve top performance, and that elitist versions of multimemetic EDAs using bivariate probabilistic models are capable of outperforming genetic MMAs.es_ES
dc.description.sponsorshipThis work is partially supported by MICINN project ANYSELF (TIN2011-28627-C04-01), by Junta de Andalucía project DNEMESIS (P10-TIC-6083) and by Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttp://hdl.handle.net/10630/8070
dc.language.isoenges_ES
dc.relation.eventdate13/09/2014es_ES
dc.relation.eventplaceLjubljana, Esloveniaes_ES
dc.relation.eventtitle13th International Conference on Parallel Problem Solving from Naturees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectResolución de problemases_ES
dc.subjectAlgoritmoses_ES
dc.subject.otherEstimation of Distribution Algorithmses_ES
dc.subject.otherMemetic Algorithmes_ES
dc.subject.otherMultimemetic Algorithmses_ES
dc.titleA Study on Multimemetic Estimation of Distribution Algorithmses_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication30d4b05d-dc2a-44c0-bc14-88fb05728f50
relation.isAuthorOfPublication.latestForDiscovery30d4b05d-dc2a-44c0-bc14-88fb05728f50

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MMEDA.pdf
Size:
328.31 KB
Format:
Adobe Portable Document Format

Collections