Localización de usuarios con coordenadas polares.
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Department/Institute
Keywords
Abstract
Currently, the increase of location aware services and network management has driven the demand for user location estimation schemes, although it is not usually available to operators. Moreover, commercial networks have limited access to specific user related metrics. In general, solutions with Machine Learning (ML) have reached high precisions, but only in a trained scenario, and with difficulties in predicting unseen areas. The approach proposed here solves the above limitation by a reference coordinate conversion, to obtain relative polar positions which create scenario agnostic models, and whose performance is demonstrated using a dataset recollected from a commercial mobile network.
Description
Bibliographic citation
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional











