Localización de usuarios con coordenadas polares.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

Currently, the increase of location aware services and network management has driven the demand for user location estimation schemes, although it is not usually available to operators. Moreover, commercial networks have limited access to specific user related metrics. In general, solutions with Machine Learning (ML) have reached high precisions, but only in a trained scenario, and with difficulties in predicting unseen areas. The approach proposed here solves the above limitation by a reference coordinate conversion, to obtain relative polar positions which create scenario agnostic models, and whose performance is demonstrated using a dataset recollected from a commercial mobile network.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional