e-LION: Data integration semantic model to enhance predictive analytics in e-Learning.

dc.contributor.authorPaneque Romero, Manuel
dc.contributor.authorRoldán-García, María del Mar
dc.contributor.authorGarcía-Nieto, José Manuel
dc.date.accessioned2023-10-06T11:10:03Z
dc.date.available2023-10-06T11:10:03Z
dc.date.issued2023
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractThe surge in online education emphasizes Learning Management Systems' (LMSs) crucial role in organizing learning resources and enabling teacher-learner communication. COVID-19 accelerated this, spiking engagement and substantial learning data. Academic institutions now have extensive data for comprehensive analysis to inform educational planning. However, integrating this diverse, sizable dataset from heterogeneous sources with semantic inconsistencies is challenging. Standardized integration schemes are needed for efficient utilization in machine learning models. Semantic web technologies offer a promising framework for semantic integration of e-learning data, enabling systematic consolidation, linkage, and advanced querying. We propose the e-LION (e-Learning Integration ONtology) semantic model to consolidate diverse e-learning knowledge bases and enhance analytical capabilities. Populated with real-world data from various LMSs, focusing on Software Engineering courses from the University of Malaga (Spain) and the Open University Learning, we validate it through four in-depth case studies. Advanced semantic querying techniques feed predictive models, perform time-series forecasting of student interactions based on final grades, and develop SWRL reasoning rules for student behavior classification. Validation study results are highly promising, suggesting e-LION as an ontological mediator scheme for integrating future semantic models within the e-learning domain. This opens exciting possibilities for leveraging the e-LION model to enhance educational planning, predictive modeling, and behavioral analysis, ultimately advancing e-learning through effective semantic integration and diverse learning-related data utilization.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Teches_ES
dc.identifier.urihttps://hdl.handle.net/10630/27761
dc.language.isoenges_ES
dc.publisherSistedeses_ES
dc.relation.eventdate09/2023es_ES
dc.relation.eventplaceCiudad Real, Españaes_ES
dc.relation.eventtitleXXVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2023)es_ES
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectOntologíaes_ES
dc.subjectAnálisis de datoses_ES
dc.subjectInternet en la enseñanzaes_ES
dc.subject.otherE-learninges_ES
dc.subject.otherOntologyes_ES
dc.subject.otherOpen dataes_ES
dc.subject.otherData analysises_ES
dc.subject.otherKnowledge graphes_ES
dc.titlee-LION: Data integration semantic model to enhance predictive analytics in e-Learning.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc7a2379c-5fc9-4e25-a93b-7a5a01daab69
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication.latestForDiscoveryc7a2379c-5fc9-4e25-a93b-7a5a01daab69

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11705-JISBD-2023-2602.pdf
Size:
139.97 KB
Format:
Adobe Portable Document Format
Description: