An evaluation of best compromise search in graphs

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Keywords

Abstract

This work evaluates two different approaches for multicriteria graph search problems using compromise preferences. This approach focuses search on a single solution that represents a balanced tradeoff between objectives, rather than on the whole set of Pareto optimal solutions. We review the main concepts underlying compromise preferences, and two main approaches proposed for their solution in heuristic graph problems: naive Pareto search (NAMOA ), and a k-shortest-path approach (kA ). The performance of both approaches is evaluated on sets of standard bicriterion road map problems. The experiments reveal that the k-shortest-path approach looses effectiveness in favor of naive Pareto search as graph size increases. The reasons for this behavior are analyzed and discussed

Description

Bibliographic citation

http://link.springer.com/chapter/10.1007/978-3-642-40643-0_1

Collections

Endorsement

Review

Supplemented By

Referenced by