Mean Lipschitz spaces and a generalized Hilbert operator.
Loading...
Files
Description: Versión aceptada antes de ser publicada
Identifiers
Publication date
Reading date
Authors
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Share
Center
Department/Institute
Abstract
If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix H_μ={ μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k} where μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we study the action of the operators H_μ on mean Lipschitz spaces of analytic functions.
Description
https://www.springernature.com/gp/open-research/policies/journal-policies (no CC)
Bibliographic citation
Merchán, N. Mean Lipschitz spaces and a generalized Hilbert operator. Collect. Math. 70, 59–69 (2019). https://doi.org/10.1007/s13348-018-0217-y












