Mean Lipschitz spaces and a generalized Hilbert operator.

Loading...
Thumbnail Image

Files

Mean Lipschitz spaces and a generalized Hilbert operator.pdf (310.25 KB)

Description: Versión aceptada antes de ser publicada

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix H_μ={ μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k} where μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we study the action of the operators H_μ on mean Lipschitz spaces of analytic functions.

Description

https://www.springernature.com/gp/open-research/policies/journal-policies (no CC)

Bibliographic citation

Merchán, N. Mean Lipschitz spaces and a generalized Hilbert operator. Collect. Math. 70, 59–69 (2019). https://doi.org/10.1007/s13348-018-0217-y

Collections

Endorsement

Review

Supplemented By

Referenced by