Graded modules over simple Lie algebras with a grading

dc.centroE.T.S.I. Industriales_ES
dc.contributor.authorKotchetov, Mikhail
dc.date.accessioned2015-06-11T11:46:30Z
dc.date.available2015-06-11T11:46:30Z
dc.date.created2015
dc.date.issued2015-06-11
dc.departamentoMatemática Aplicada
dc.description.abstractIn the past two decades there has been a considerable interest in describing all possible gradings by abelian groups on simple Lie algebras. Over an algebraically closed field of characteristic zero, the answer is nearly complete in the finite-dimensional case: fine gradings have been classified up to equivalence for all types, and arbitrary $G$-gradings, for a fixed group $G$, have been classified up to isomorphism except for types $E_6$, $E_7$ and $E_8$. For a given $G$-grading on a simple finite-dimensional Lie algebra $L$, we will discuss some recent classification results for finite-dimensional graded $L$-modules.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.orcidorcid.org/0000-0002-2998-7473es_ES
dc.identifier.urihttp://hdl.handle.net/10630/9892
dc.language.isoenges_ES
dc.relation.eventdate17/06/2015es_ES
dc.relation.eventplaceMálaga, Españaes_ES
dc.relation.eventtitleConferenciaes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectLie, Algebras dees_ES
dc.subject.otherGradingses_ES
dc.subject.otherGraded representationses_ES
dc.titleGraded modules over simple Lie algebras with a gradinges_ES
dc.typeconference outputes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kotchetov15.pdf
Size:
86.19 KB
Format:
Adobe Portable Document Format
Description: