Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGarcía Aguilar, Iván
dc.contributor.authorGaleano-Brajones, Jesús
dc.contributor.authorLuna-Valero, Francisco
dc.contributor.authorCarmona Murillo, Javier
dc.contributor.authorFernández-Rodríguez, Jose David
dc.contributor.authorLuque-Baena, Rafael Marcos
dc.date.accessioned2024-07-19T11:52:43Z
dc.date.available2024-07-19T11:52:43Z
dc.date.issued2024
dc.departamentoLenguajes y Ciencias de la Computación
dc.descriptionPolítica de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policies
dc.description.abstractDeploying 5G networks in urban areas is crucial for meeting the increasing demand for high-speed, low-latency wireless communications. However, the complex topography and diverse building structures in urban environments have challenges in identifying suitable locations for base stations. This research explores leveraging deep learning neural networks to analyze satellite imagery, creating a predictive tool for identifying potential rooftop locations. Integrating these predictions into a user-friendly desktop application simplifies the site selection process, reducing the need for costly and labor-intensive site visits in 5G network deployment. This approach democratizes the deployment process, making it accessible to a broader audience. The combination of advanced technology and satellite imagery offers a promising solution to efficiently deploy 5G base stations in urban landscapes, contributing to the widespread adoption of this technology in densely populated areas and advancing 5G connectivity globally.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.citationGarcía-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4es_ES
dc.identifier.citationGarcía-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4
dc.identifier.doi10.1007/978-3-031-61137-7_4
dc.identifier.urihttps://hdl.handle.net/10630/32259
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.eventdateJune 4–7, 2024es_ES
dc.relation.eventplaceOlhâo, Portugales_ES
dc.relation.eventtitle10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectSistemas telefónicos móvileses_ES
dc.subject.otherConvolutional Neural Networkes_ES
dc.subject.otherDeep Learninges_ES
dc.subject.other5G Deploymentes_ES
dc.titlePrediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis.es_ES
dc.typeconference outputes_ES
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication91a7952c-23fe-4c2c-99cb-abbc3b36d084
relation.isAuthorOfPublication15881531-a431-477b-80d6-532058d8377c
relation.isAuthorOfPublication.latestForDiscovery91a7952c-23fe-4c2c-99cb-abbc3b36d084

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Prediction_of_Optimal_Locations_for_5G_Base_Stations_in_Urban_Environments_using_Neural_Networks_and_Satellite_Image_Analysis-8.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description: