Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis.
| dc.centro | E.T.S.I. Informática | es_ES |
| dc.contributor.author | García Aguilar, Iván | |
| dc.contributor.author | Galeano-Brajones, Jesús | |
| dc.contributor.author | Luna-Valero, Francisco | |
| dc.contributor.author | Carmona Murillo, Javier | |
| dc.contributor.author | Fernández-Rodríguez, Jose David | |
| dc.contributor.author | Luque-Baena, Rafael Marcos | |
| dc.date.accessioned | 2024-07-19T11:52:43Z | |
| dc.date.available | 2024-07-19T11:52:43Z | |
| dc.date.issued | 2024 | |
| dc.departamento | Lenguajes y Ciencias de la Computación | |
| dc.description | Política de acceso abierto tomada de: https://www.springernature.com/gp/open-research/policies/book-policies | |
| dc.description.abstract | Deploying 5G networks in urban areas is crucial for meeting the increasing demand for high-speed, low-latency wireless communications. However, the complex topography and diverse building structures in urban environments have challenges in identifying suitable locations for base stations. This research explores leveraging deep learning neural networks to analyze satellite imagery, creating a predictive tool for identifying potential rooftop locations. Integrating these predictions into a user-friendly desktop application simplifies the site selection process, reducing the need for costly and labor-intensive site visits in 5G network deployment. This approach democratizes the deployment process, making it accessible to a broader audience. The combination of advanced technology and satellite imagery offers a promising solution to efficiently deploy 5G base stations in urban landscapes, contributing to the widespread adoption of this technology in densely populated areas and advancing 5G connectivity globally. | es_ES |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | García-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4 | es_ES |
| dc.identifier.citation | García-Aguilar, I., Galeano-Brajones, J., Luna-Valero, F., Carmona-Murillo, J., Fernández-Rodríguez, J.D., Luque-Baena, R.M. (2024). Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_4 | |
| dc.identifier.doi | 10.1007/978-3-031-61137-7_4 | |
| dc.identifier.uri | https://hdl.handle.net/10630/32259 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer | es_ES |
| dc.relation.eventdate | June 4–7, 2024 | es_ES |
| dc.relation.eventplace | Olhâo, Portugal | es_ES |
| dc.relation.eventtitle | 10th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2024 | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Redes neuronales (Informática) | es_ES |
| dc.subject | Sistemas telefónicos móviles | es_ES |
| dc.subject.other | Convolutional Neural Network | es_ES |
| dc.subject.other | Deep Learning | es_ES |
| dc.subject.other | 5G Deployment | es_ES |
| dc.title | Prediction of Optimal Locations for 5G Base Stations in Urban Environments Using Neural Networks and Satellite Image Analysis. | es_ES |
| dc.type | conference output | es_ES |
| dc.type.hasVersion | AM | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 91a7952c-23fe-4c2c-99cb-abbc3b36d084 | |
| relation.isAuthorOfPublication | 15881531-a431-477b-80d6-532058d8377c | |
| relation.isAuthorOfPublication.latestForDiscovery | 91a7952c-23fe-4c2c-99cb-abbc3b36d084 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Prediction_of_Optimal_Locations_for_5G_Base_Stations_in_Urban_Environments_using_Neural_Networks_and_Satellite_Image_Analysis-8.pdf
- Size:
- 1.35 MB
- Format:
- Adobe Portable Document Format
- Description:

