From Synthetic Data to Real Palm Vein Identification: a Fine-Tuning Approach.

dc.contributor.authorHernández-García, Ruber
dc.contributor.authorSalazar-Jurado, Edwin
dc.contributor.authorBarrientos, Ricardo J.
dc.contributor.authorCastro Payán, Francisco Manuel
dc.contributor.authorRamos-Cózar, Julián
dc.contributor.authorGuil-Mata, Nicolás
dc.date.accessioned2025-11-24T09:49:50Z
dc.date.available2025-11-24T09:49:50Z
dc.date.issued2023-07-18
dc.departamentoArquitectura de Computadoreses_ES
dc.descriptionhttps://conferences.ieeeauthorcenter.ieee.org/author-ethics/guidelines-and-policies/post-publication-policies/#accepted (24 meses embargo)es_ES
dc.description.abstractPalm vein recognition has relevant advantages in comparison with most traditional biometrics, such as high security and recognition performance. In recent years, CNN-based models for vascular biometrics have improved the state-of-the-art, but they have the disadvantage of requiring a larger number of samples for training. In this context, the generation of synthetic databases is very effective for evaluating the performance of biometric systems. The present study proposes a new perspective of a transfer learning approach for palm vein recognition, evaluating the use of Synthetic-sPVDB and NS-PVDB synthetic databases for pre-training deep learning models and validating their performance on real databases. The proposed methodology comprises two different branches as inputs. Firstly, a synthetic database is used to train a CNN model, and in the second branch, a real database is used to finetune and evaluate the performance of the resulting pre-trained model. For the feature learning process, we implemented two end-to-end CNN architectures based on AlexNet and Resnet32. The experimental results on the most representative public datasets have shown the usefulness of using palm vein synthetic images for transfer learning, outperforming the state-of-the-art results.es_ES
dc.identifier.doi10.1109/ICPRS58416.2023.10179042
dc.identifier.urihttps://hdl.handle.net/10630/40881
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.eventdate2023es_ES
dc.relation.eventplaceGuayaquil (Ecuador)es_ES
dc.relation.eventtitle2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS'23)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectBiometríaes_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectReconocimiento de formas (Informática)es_ES
dc.subject.otherBiometricses_ES
dc.subject.otherConvolutional neural networkses_ES
dc.subject.otherPalm vein recognitiones_ES
dc.subject.otherSynthetic datasetses_ES
dc.subject.otherTransfer learninges_ES
dc.titleFrom Synthetic Data to Real Palm Vein Identification: a Fine-Tuning Approach.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication046027b0-4274-40e8-b067-d162ba047b37
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublication.latestForDiscovery046027b0-4274-40e8-b067-d162ba047b37

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ICPRS___Synthetic_Palm_Vein_Analysis.pdf
Size:
474.53 KB
Format:
Adobe Portable Document Format
Description: