A semantic-based gas source localization with a mobile robot combining vision and chemical sensing.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGonzález-Monroy, Javier
dc.contributor.authorRuiz-Sarmiento, José Raúl
dc.contributor.authorMoreno-Dueñas, Francisco Ángel
dc.contributor.authorMeléndez-Fernández, Francisco
dc.contributor.authorGalindo-Andrades, Cipriano
dc.contributor.authorGonzález-Jiménez, Antonio Javier
dc.date.accessioned2024-02-06T11:20:35Z
dc.date.available2024-02-06T11:20:35Z
dc.date.issued2018-11-28
dc.departamentoIngeniería de Sistemas y Automática
dc.descriptionCC BYes_ES
dc.description.abstractThis paper addresses the localization of a gas emission source within a real-world human environment with a mobile robot. Our approach is based on an efficient and coherent system that fuses different sensor modalities (i.e., vision and chemical sensing) to exploit, for the first time, the semantic relationships among the detected gases and the objects visually recognized in the environment. This novel approach allows the robot to focus the search on a finite set of potential gas source candidates (dynamically updated as the robot operates), while accounting for the non-negligible uncertainties in the object recognition and gas classification tasks involved in the process. This approach is particularly interesting for structured indoor environments containing multiple obstacles and objects, enabling the inference of the relations between objects and between objects and gases. A probabilistic Bayesian framework is proposed to handle all these uncertainties and semantic relations, providing an ordered list of candidates to be the source. This candidate list is updated dynamically upon new sensor measurements to account for objects not previously considered in the search process. The exploitation of such probabilities together with information such as the locations of the objects, or the time needed to validate whether a given candidate is truly releasing gases, is delegated to a path planning algorithm based on Markov decision processes to minimize the search time. The system was tested in an office-like scenario, both with simulated and real experiments, to enable the comparison of different path planning strategies and to validate its efficiency under real-world conditions.es_ES
dc.description.sponsorshipMinisterio de Economía y Competitividad (DPI2017-84827-R). Unión europea (MoveCare (732158)). Junta de Andalucía (TEP2012-530).es_ES
dc.identifier.citationMonroy, J.; Ruiz-Sarmiento, J.-R.; Moreno, F.-A.; Melendez-Fernandez, F.; Galindo, C.; Gonzalez-Jimenez, J. A Semantic-Based Gas Source Localization with a Mobile Robot Combining Vision and Chemical Sensing. Sensors 2018, 18, 4174. https://doi.org/10.3390/s18124174es_ES
dc.identifier.doi10.3390/s18124174
dc.identifier.urihttps://hdl.handle.net/10630/29893
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectRobots autónomoses_ES
dc.subjectDetectores de gaseses_ES
dc.subject.otherElectronic nosees_ES
dc.subject.otherGas sensores_ES
dc.subject.otherMobile robotes_ES
dc.subject.otherGas source localizationes_ES
dc.titleA semantic-based gas source localization with a mobile robot combining vision and chemical sensing.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa9d81358-1fcf-4f04-8a11-2f03346a1928
relation.isAuthorOfPublicationb8f8b59c-be28-4aa6-9f1b-db7b0dc8f93b
relation.isAuthorOfPublication076da759-602d-4c06-b766-134605f27098
relation.isAuthorOfPublication0225b160-54f3-4bd5-a28a-4522469436af
relation.isAuthorOfPublication3000ee8d-0551-4a25-b568-d5c0a93117b2
relation.isAuthorOfPublication.latestForDiscoverya9d81358-1fcf-4f04-8a11-2f03346a1928

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
S2_sensors_monroy2018semantic_gas.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal, versión publicada en Open Access.
Download

Description: Artículo principal, versión publicada en Open Access.

Collections