Models for the Optimization and Evaluation of Photovoltaic Self-Consumption Facilities

Loading...
Thumbnail Image

Files

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

The results obtained for the modeling and optimization of photovoltaic self-consumption facilities are presented. The study has been carried out for three Spanish cities with different climatic conditions. The self-consumption and self-sufficiency curves for different hourly consumption profiles have been obtained based on the installed peak power and the size of the battery. Different models of machine learning are proposed to predict these parameters. The input variables of these models are related to the configuration of the installation, its location and the type of consumption profile. The model with best predictions of self-sufficiency is Random Forest, which in cross-validation has a relative error of 5%. For the prediction of self-consumption, the model that performs best is the multilayer perceptron, with an average absolute error of 0.55 and an absolute relative error of 3%.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional