Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks

dc.contributor.authorAtencia-Ruiz, Miguel Alejandro
dc.contributor.authorStoean, Ruxandra
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.date.accessioned2026-01-12T11:21:00Z
dc.date.available2026-01-12T11:21:00Z
dc.date.issued2020-08-17
dc.departamentoMatemática Aplicadaes_ES
dc.description.abstractThe application of Echo State Networks to time series prediction has provided notable results, favoured by their reduced computational cost, since the connection weights require no learning. There is however a need for general methods that guide the choice of parameters, in particular the reservoir size and ridge regression coefficient, improve the prediction accuracy, and provide an assessment of the uncertainty of the estimates. In this paper we propose such a mechanism for uncertainty quantification based on Monte Carlo dropout, where the output of a subset of reservoir units is zeroed before the computation of the output. Dropout is only performed at the test stage, since the immediate goal is only the computation of a measure of the goodness of the prediction. Results show that the proposal is a promising method for uncertainty quantification, providing a value that is either strongly correlated with the prediction error, or reflects the prediction of qualitative features of the time series. This mechanism could eventually be included into the learning algorithm in order to obtain performance enhancements and alleviate the burden of parameter choice.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación. Plan Estatal de Investigación Científica y Técnica y de Innovaciónes_ES
dc.identifier.citationAtencia, M., Stoean, R., & Joya, G. (2020). Uncertainty Quantification through Dropout in Time Series Prediction by Echo State Networks. Mathematics, 8(8), 1374es_ES
dc.identifier.doihttps://doi.org/10.3390/math8081374
dc.identifier.urihttps://hdl.handle.net/10630/41430
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectPrevisión, Teoría de laes_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subject.otherEcho State Networkses_ES
dc.subject.otherReservoir computinges_ES
dc.subject.otherUncertainty quantificationes_ES
dc.subject.otherDropoutes_ES
dc.subject.otherEnsemble learninges_ES
dc.titleUncertainty Quantification through Dropout in Time Series Prediction by Echo State Networkses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication95963a23-8000-45d2-82c7-31a690f38a5b
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery95963a23-8000-45d2-82c7-31a690f38a5b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematics-08-01374.pdf
Size:
947.78 KB
Format:
Adobe Portable Document Format
Description:

Collections