Thermodynamic analysis of an enhanced ejector vapor injection refrigeration cycle for CO2 transcritical operation at low evaporating temperatures

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorÁvila Gutiérrez, Miguel
dc.contributor.authorPeris-Pérez, Bernardo
dc.contributor.authorDomínguez-Muñoz, Fernando
dc.contributor.authorBesagni, Giorgio
dc.contributor.authorSalmerón Lissén, José Manuel
dc.date.accessioned2025-09-01T11:05:49Z
dc.date.available2025-09-01T11:05:49Z
dc.date.issued2024-06-11
dc.departamentoIngeniería Mecánica, Térmica y de Fluidoses_ES
dc.descriptionhttps://openpolicyfinder.jisc.ac.uk/id/publication/12611es_ES
dc.description.abstractThe main drawback associated with CO2 refrigeration systems is related to their performance reduction during transcritical operation at warm climate conditions, which may be compensated by better cycle architectures such as the split-cycle with subcooling or the flash-tank configuration, among others. Specifically, the use of standard gas-ejectors together with parallel compressors provides even better efficiency improvements, not being able to use them with low-temperature evaporators to prevent the triple point inside the ejector. This paper proposes an enhanced cycle with a gas ejector for two-stage compressor architectures with vapor injection from the flash- tank, which is able to operate at low evaporating temperatures and that provides a greater performance improvement the more severe the climate conditions are. The methodology conducted is based on a thermo- dynamic analysis that includes parametric evaluation and cycle optimization, comparing the results to a con- ventional CO2 transcritical cycle with flash-tank and dynamic vapor injection architecture. The main results show that a maximum Coefficient of Performance improvement of 17.5% is achievable for transcritical operation at -40 ◦C evaporating temperature. The compressor displacement capacity required with the enhanced cycle is up to 9% lower for the same refrigeration demand, reducing the electrical consumption as well as the compressor expenditure. Moreover, greater vapor injection mass flow rates are obtained by the gas-ejector injection with discharge temperature reductions up to 18%, enhancing the system reliability.es_ES
dc.identifier.citationInternational Journal of Refrigeration 165 (2024) 257–276es_ES
dc.identifier.doi10.1016/j.ijrefrig.2024.06.014
dc.identifier.urihttps://hdl.handle.net/10630/39724
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights.accessRightsembargoed accesses_ES
dc.subjectTermodinámicaes_ES
dc.subjectRefrigeración y máquinas frigoríficases_ES
dc.subjectConsumo de energíaes_ES
dc.subject.otherR744es_ES
dc.subject.otherTwo-phase ejectores_ES
dc.subject.otherDynamic vapor injectiones_ES
dc.subject.otherTwo-stage compressores_ES
dc.subject.otherEnergy efficiencyes_ES
dc.titleThermodynamic analysis of an enhanced ejector vapor injection refrigeration cycle for CO2 transcritical operation at low evaporating temperatureses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationa05ef485-824c-489f-9b7b-deedc07a34a9
relation.isAuthorOfPublication13b6551b-f454-4a54-8ef4-e59f1fdbcc58
relation.isAuthorOfPublication.latestForDiscoverya05ef485-824c-489f-9b7b-deedc07a34a9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JIJR 6220.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Journal Pre-proof del artículo
Download

Description: Journal Pre-proof del artículo

Collections