Time series features and fuzzy memberships combination for time series classification

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Authors

Baldán, Francisco J.
Martínez, Luis

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Center

Abstract

Time series classification is an increasingly attractive field with the appearance of new problems in an expanding digitalized world. Most of the proposals in the state-of-the-art have focused just on improving the results’ performance, leaving interpretability on a secondary level. The available interpretable proposals do not provide competitive results, which is an issue to be addressed. This paper introduces a new fuzzy feature-based time series classification method, which joins the ability of time series features to capture essential information about the time series with Fuzzy logic. This proposal allows the fuzzy-based approach to incorporate global information about the behavior of time series in the membership calculation with the aim of improving the performance and interpretability of the results by using an interpretable classifier. The proposed method has been evaluated over the 112 state-of-the-art time series classification datasets from the UCR repository, and the results obtained show a better performance. Furthermore, the combination of time series features and fuzzy memberships has also increased the interpretability of final models.

Description

Bibliographic citation

Francisco J. Baldán, Luis Martínez, Time series features and fuzzy memberships combination for time series classification, Neurocomputing, Volume 606, 2024, 128368, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2024.128368

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional