Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorBañuls, Adrián
dc.contributor.authorMandow, Anthony
dc.contributor.authorVázquez-Martín, Ricardo
dc.contributor.authorMorales-Rodríguez, Jesús
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.date.accessioned2020-11-20T10:36:44Z
dc.date.available2020-11-20T10:36:44Z
dc.date.issued2020-11
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractVisual object recognition is a fundamental challenge for reliable search and rescue (SAR) robots, where vision can be limited by lighting and other harsh environmental conditions in disaster sites. The goal of this paper is to explore the use of thermal and visible light images for automatic object detection in SAR scenes. With this purpose, we have used a new dataset consisting of pairs of thermal infrared (TIR) and visible (RGB) video sequences captured from an all-terrain vehicle moving through several realistic SAR exercises participated by actual first response organisations. Two instances of the open source YOLOv3 convolutional neural network (CNN) architecture are trained from annotated sets of RGB and TIR images, respectively. In particular, frames are labelled with four representative classes in SAR scenes comprising both persons civilian and first-responder) and vehicles (Civilian-car and response-vehicle). Furthermore, we perform a comparative evaluation of these networks that can provide insight for future RGB/TIR fusion.es_ES
dc.description.sponsorshipThis work has been done in the framework of the TRUST-ROB project, funded by the Spanish Government (RTI2018-093421-B-I00). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.citationBañuls, A., Mandow, A., Vázquez-Martín, R. Morales, J., García-Cerezo, A., "Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes", En: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp 1-7. 2020.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/20415
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.eventdate4-6 November 2020es_ES
dc.relation.eventplaceAbu Dhabi (Online Conference)es_ES
dc.relation.eventtitle2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRobotses_ES
dc.subjectDetectores de infrarrojoses_ES
dc.subject.otherDisaster roboticses_ES
dc.subject.otherThermal infraredes_ES
dc.subject.otherSearch and rescuees_ES
dc.subject.otherDeep learninges_ES
dc.titleObject Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Sceneses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublication14beb91d-691d-46e6-b1fc-aa7eddbc04ee
relation.isAuthorOfPublication14fa0e60-c422-48ee-8093-600fb95e788c
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication.latestForDiscovery5f0a1dda-1e55-4bcd-b78a-7af23b346a79

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SSRR_2020__TIR-RGB-SAR (PREPRINT SAMPLE).pdf
Size:
454.94 KB
Format:
Adobe Portable Document Format
Description:
Sample preprint version of the paper. The full paper will be available from https://ieeexplore.ieee.org.
Download

Description: Sample preprint version of the paper. The full paper will be available from https://ieeexplore.ieee.org.