Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Bañuls, Adrián | |
| dc.contributor.author | Mandow, Anthony | |
| dc.contributor.author | Vázquez-Martín, Ricardo | |
| dc.contributor.author | Morales-Rodríguez, Jesús | |
| dc.contributor.author | García-Cerezo, Alfonso José | |
| dc.date.accessioned | 2020-11-20T10:36:44Z | |
| dc.date.available | 2020-11-20T10:36:44Z | |
| dc.date.issued | 2020-11 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | Visual object recognition is a fundamental challenge for reliable search and rescue (SAR) robots, where vision can be limited by lighting and other harsh environmental conditions in disaster sites. The goal of this paper is to explore the use of thermal and visible light images for automatic object detection in SAR scenes. With this purpose, we have used a new dataset consisting of pairs of thermal infrared (TIR) and visible (RGB) video sequences captured from an all-terrain vehicle moving through several realistic SAR exercises participated by actual first response organisations. Two instances of the open source YOLOv3 convolutional neural network (CNN) architecture are trained from annotated sets of RGB and TIR images, respectively. In particular, frames are labelled with four representative classes in SAR scenes comprising both persons civilian and first-responder) and vehicles (Civilian-car and response-vehicle). Furthermore, we perform a comparative evaluation of these networks that can provide insight for future RGB/TIR fusion. | es_ES |
| dc.description.sponsorship | This work has been done in the framework of the TRUST-ROB project, funded by the Spanish Government (RTI2018-093421-B-I00). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | es_ES |
| dc.identifier.citation | Bañuls, A., Mandow, A., Vázquez-Martín, R. Morales, J., García-Cerezo, A., "Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes", En: IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp 1-7. 2020. | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10630/20415 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | IEEE | es_ES |
| dc.relation.eventdate | 4-6 November 2020 | es_ES |
| dc.relation.eventplace | Abu Dhabi (Online Conference) | es_ES |
| dc.relation.eventtitle | 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.subject | Robots | es_ES |
| dc.subject | Detectores de infrarrojos | es_ES |
| dc.subject.other | Disaster robotics | es_ES |
| dc.subject.other | Thermal infrared | es_ES |
| dc.subject.other | Search and rescue | es_ES |
| dc.subject.other | Deep learning | es_ES |
| dc.title | Object Detection from Thermal Infrared and Visible Light Cameras in Search and Rescue Scenes | es_ES |
| dc.type | conference output | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 5f0a1dda-1e55-4bcd-b78a-7af23b346a79 | |
| relation.isAuthorOfPublication | 14beb91d-691d-46e6-b1fc-aa7eddbc04ee | |
| relation.isAuthorOfPublication | 14fa0e60-c422-48ee-8093-600fb95e788c | |
| relation.isAuthorOfPublication | 111d26c1-efd3-4b8a-a05b-420a796580e0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 5f0a1dda-1e55-4bcd-b78a-7af23b346a79 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- SSRR_2020__TIR-RGB-SAR (PREPRINT SAMPLE).pdf
- Size:
- 454.94 KB
- Format:
- Adobe Portable Document Format
- Description:
- Sample preprint version of the paper. The full paper will be available from https://ieeexplore.ieee.org.
Description: Sample preprint version of the paper. The full paper will be available from https://ieeexplore.ieee.org.

