Semantic modelling of Earth Observation remote sensing.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorAldana Martín, José Francisco
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorRoldán-García, María del Mar
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2023-10-03T12:36:44Z
dc.date.available2023-10-03T12:36:44Z
dc.date.created2023-09
dc.date.issued2023-09
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractEarth Observation (EO) based on Remote Sensing (RS) is becoming increasingly important, offering a robust technological framework for advanced applications in various domains like climate change, precision agriculture, smart urban planning, safety, and more. This leads to the development of data-driven software tools for enhanced data processing, analysis, and visualization, often with improved computing capabilities. However, the challenge of knowledge-driven approaches in remote sensing persists, despite their advantages in domain knowledge representation, data standardization, and semantic integration. Ontologies and semantic web technologies have proven successful in many fields, including Earth Observation, but there's significant room for improvement in remote sensing, particularly in addressing the unique nature and structure of satellite and airborne data products. This article addresses this need by proposing a semantic model for consolidating, integrating, reasoning, and linking data (including meta-data) in the context of satellite remote sensing products for EO. The authors have developed an OWL ontology and created an RDF repository to enable advanced SPARQL querying. While the proposal is intended for remote sensing data products in general, the primary focus is on the Sentinel 2 satellite mission from the Copernicus Programme of the European Space Agency (ESA). The article showcases four distinct use cases to illustrate the potential of the proposed semantic model in terms of ontology integration, federated querying, data analysis, and reasoning.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/27729
dc.language.isoenges_ES
dc.relation.eventdateseptiembre 2023es_ES
dc.relation.eventplaceCiudad Real, Españaes_ES
dc.relation.eventtitleJornadas SISTEDES 2023es_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectGeofísica - Observacioneses_ES
dc.subjectTeledetecciónes_ES
dc.subject.otherOntologyes_ES
dc.subject.otherReasoninges_ES
dc.subject.otherRemote sensinges_ES
dc.subject.otherEarth observationes_ES
dc.subject.otherSemantic webes_ES
dc.subject.otherLinked dataes_ES
dc.titleSemantic modelling of Earth Observation remote sensing.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublicationc7a2379c-5fc9-4e25-a93b-7a5a01daab69
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JISBD_2023_paper_1447-2.pdf
Size:
122.31 KB
Format:
Adobe Portable Document Format
Description: