Optimizing Hearthstone Agents using an Evolutionary Algorithm.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorGarcía Sánchez, Pablo
dc.contributor.authorTonda, Alberto
dc.contributor.authorFernández-Leiva, Antonio José
dc.contributor.authorCotta-Porras, Carlos
dc.date.accessioned2024-10-25T09:48:30Z
dc.date.available2024-10-25T09:48:30Z
dc.date.issued2020
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.descriptionPolítica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/16928es_ES
dc.description.abstractDigital collectible card games are not only a growing part of the video game industry, but also an interesting research area for the field of computational intelligence. This game genre allows researchers to deal with hidden information, uncertainty and planning, among other aspects. This paper proposes the use of evolutionary algorithms (EAs) to develop agents who play a card game, Hearthstone, by optimizing a data-driven decision-making mechanism that takes into account all the elements currently in play. Agents feature self-learning by means of a competitive coevolutionary training approach, whereby no external sparring element defined by the user is required for the optimization process. One of the agents developed through the proposed approach was runner-up (best 6%) in an international Hearthstone Artificial Intelligence (AI) competition. Our proposal performed remarkably well, even when it faced state-of-the-art techniques that attempted to take into account future game states, such as Monte-Carlo Tree search. This outcome shows how evolutionary computation could represent a considerable advantage in developing AIs for collectible card games such as Hearthstone.es_ES
dc.description.sponsorshipSPIP2017-02116, EphemeCH (TIN2014-56494-C4-f{1,3}-P), DeepBio (TIN2017-85727-C4-{1,2}-P), TEC2015-68752es_ES
dc.identifier.citationP. García Sánchez, A. Tonda, A.J. Fernández Leiva, C. Cotta, Optimizing Hearthstone Agents using an Evolutionary Algorithm, Knowledge-Based Systems 188:105032, 2020es_ES
dc.identifier.doi10.1016/j.knosys.2019.105032
dc.identifier.urihttps://hdl.handle.net/10630/34911
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAlgoritmos evolutivoses_ES
dc.subjectJuegos de cartas - Modelos matemáticoses_ES
dc.subject.otherEvolutionary algorithmses_ES
dc.subject.otherHearthstonees_ES
dc.subject.otherVideogameses_ES
dc.subject.otherEvolution strategyes_ES
dc.subject.otherArtificial intelligencees_ES
dc.subject.otherCard gameses_ES
dc.titleOptimizing Hearthstone Agents using an Evolutionary Algorithm.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication76a460eb-c8a1-4e47-94b1-885e6569aa17
relation.isAuthorOfPublication30d4b05d-dc2a-44c0-bc14-88fb05728f50
relation.isAuthorOfPublication.latestForDiscovery76a460eb-c8a1-4e47-94b1-885e6569aa17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optimizing Hearthstone agents using an evolutionary algorithm.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections