Gas Source Localization Strategies for Teleoperated Mobile Robots. An Experimental Analysis
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Share
Center
Department/Institute
Keywords
Abstract
Gas source localization (GSL) is one of the most important and direct applications of a gas sensitive mobile robot, and consists in searching for one or multiple volatile
emission sources with a mobile robot that has improved sensing
capabilities (i.e. olfaction, wind flow, etc.). This work adresses GSL by employing a teleoperated mobile robot, and focuses on
which search strategy is the most suitable for this teleoperated approach. Four different search strategies, namely chemotaxis,
anemotaxis, gas-mapping, and visual-aided search, are analyzed
and evaluated according to a set of proposed indicators (e.g. accuracy,
efficiency, success rate, etc.) to determine the most suitable
one for a human-teleoperated mobile robot. Experimental validation is carried out employing a large dataset composed of over 150 trials where volunteer operators had to locate a gas-leak in a virtual environment under various and realistic environmental conditions (i.e. different wind flow patterns and gas source locations). We report different findings, from which we highlight that, against intuition, visual-aided search is not always the best strategy, but depends on the environmental conditions and the operator’s ability to understand how gas distributes.
Description
Bibliographic citation
European Conference on Mobile Robotics (ECMR), 2017










