Decompositions of periodic matrices into a sum of special matrices

dc.centroFacultad de Cienciases_ES
dc.contributor.authorDanchev, Peter
dc.contributor.authorGarcía, Esther
dc.contributor.authorGómez-Lozano, Miguel Ángel
dc.date.accessioned2025-12-11T12:24:29Z
dc.date.available2025-12-11T12:24:29Z
dc.date.issued2025
dc.departamentoÁlgebra, Geometría y Topologíaes_ES
dc.descriptionhttps://journals.uwyo.edu/index.php/ela/about/submissionses_ES
dc.description.abstractWe study the problem of when a periodic square matrix of order n×n over an arbitrary field F is decomposable into the sum of a square-zero matrix and a torsion matrix and show that this decomposition can always be obtained for matrices of rank at least n/2 when F is either a field of prime characteristic, or the field of rational numbers, or an algebraically closed field of zero characteristic. We also provide a counterexample to such a decomposition when F equals the field of the real numbers.es_ES
dc.description.sponsorshipFQM264es_ES
dc.identifier.citationhttps://journals.uwyo.edu/index.php/ela/article/view/9099es_ES
dc.identifier.doihttps://doi.org/10.13001/ela.2025.9099
dc.identifier.urihttps://hdl.handle.net/10630/41065
dc.language.isoenges_ES
dc.publisherInternational Linear Algebra Society (ILAS)es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectMatrices (Matemáticas)es_ES
dc.subjectGrupos nilpotenteses_ES
dc.subject.otherPeriodices_ES
dc.subject.otherIdempotentes_ES
dc.subject.otherTorsiones_ES
dc.subject.otherNilpotentes_ES
dc.subject.otherCharacteristic polynomiales_ES
dc.titleDecompositions of periodic matrices into a sum of special matriceses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc449805c-94cf-44fe-a228-25d96d03ec99
relation.isAuthorOfPublication.latestForDiscoveryc449805c-94cf-44fe-a228-25d96d03ec99

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vol41_pp174-180.pdf
Size:
300.79 KB
Format:
Adobe Portable Document Format
Description:

Collections