Explainable clinical coding with in-domain adapted transformers

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorLópez-García, Guillermo
dc.contributor.authorJerez-Aragonés, José Manuel
dc.contributor.authorRibelles, Nuria
dc.contributor.authorAlba-Conejo, Emilio
dc.contributor.authorVeredas-Navarro, Francisco Javier
dc.date.accessioned2023-04-18T11:12:58Z
dc.date.available2023-04-18T11:12:58Z
dc.date.issued2023
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractBackground and Objective: Automatic clinical coding is a crucial task in the process of extracting relevant in-formation from unstructured medical documents contained in Electronic Health Records (EHR). However, most of the existing computer-based methods for clinical coding act as “black boxes”, without giving a detailed description of the reasons for the clinical-coding assignments, which greatly limits their applicability to real-world medical scenarios. The objective of this study is to use transformer-based models to effectively tackle explainable clinical-coding. In this way, we require the models to perform the assignments of clinical codes to medical cases, but also to provide the reference in the text that justifies each coding assignment. Methods: We examine the performance of 3 transformer-based architectures on 3 different explainable clinical-coding tasks. For each transformer, we compare the performance of the original general-domain version with an in-domain version of the model adapted to the specificities of the medical domain. We address the explainable clinical-coding problem as a dual medical named entity recognition (MER) and medical named entity normal-ization (MEN) task. For this purpose, we have developed two different approaches, namely a multi-task and a hierarchical-task strategy. Results: For each analyzed transformer, the clinical-domain version significantly outperforms the corresponding general domain model across the 3 explainable clinical-coding tasks analyzed in this study. Furthermore, the hierarchical-task approach yields a significantly superior performance than the multi-task strategy. Specifically, the combination of the hierarchical-task strategy with an ensemble approach leveraging the predictive capa-bilities of the 3 distinct clinical-domain transformerses_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the SCBI (Supercomputing and Bioinformatics) center of the University of Málaga.es_ES
dc.identifier.citationGuillermo López-García, José M. Jerez, Nuria Ribelles, Emilio Alba, Francisco J. Veredas, Explainable clinical coding with in-domain adapted transformers, Journal of Biomedical Informatics, Volume 139, 2023, 104323, ISSN 1532-0464, https://doi.org/10.1016/j.jbi.2023.104323. (https://www.sciencedirect.com/science/article/pii/S1532046423000448)es_ES
dc.identifier.doihttps://doi.org/10.1016/j.jbi.2023.104323
dc.identifier.urihttps://hdl.handle.net/10630/26275
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMedicina-Proceso de datoses_ES
dc.subject.otherClinical Codinges_ES
dc.subject.otherExplainable Artificial Intelligencees_ES
dc.subject.otherTransformerses_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherNatural Language Processinges_ES
dc.subject.otherMedical Entity Normalizationes_ES
dc.titleExplainable clinical coding with in-domain adapted transformerses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f27291-58a9-4408-860c-12508516ff67
relation.isAuthorOfPublication1e58df71-b337-4856-a5e8-02f8c2e8792b
relation.isAuthorOfPublicationb8ab3a42-65ef-4349-9230-798e19f78426
relation.isAuthorOfPublication.latestForDiscoveryb6f27291-58a9-4408-860c-12508516ff67

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1532046423000448-main.pdf
Size:
946.58 KB
Format:
Adobe Portable Document Format
Description:

Collections