Inversión aproximada de matrices en sistemas Massive MIMO correlados en tiempo o frecuencia

dc.centroE.T.S.I. Telecomunicaciónen_US
dc.contributor.authorCobos Morales, Óscar
dc.contributor.authorSoldado Guerrero, Rafael
dc.contributor.authorMartos-Naya, Eduardo
dc.contributor.authorLópez-Martínez, Francisco Javier
dc.contributor.authorEntrambasaguas-Muñoz, José Tomás
dc.date.accessioned2018-09-20T10:46:12Z
dc.date.available2018-09-20T10:46:12Z
dc.date.created2018
dc.date.issued2018-09-20
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractMassive multiple-input multiple-output (MIMO) is expected to be one of the keys in 5G. In this technology, the base station is equipped with a big number of antennas serving multiple users simultaneously to improve spectral efficiency, coverage, and range. Zero-Forcing and Minimum Mean Square Error have been considered potential practical precoding and detection methods for large scale MIMO systems but require much larger dimensions of matrix inversion. This paper presents an architecture for approximate matrix inversion based on Neumann Series, thereby reducing the cost of hardware. In addition, we propose a solution for systems with time or frequency correlation among different channels where we are able to reach a much higher throughput.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Techen_US
dc.identifier.urihttps://hdl.handle.net/10630/16497
dc.language.isospaen_US
dc.relation.eventdateSeptiembre 2018en_US
dc.relation.eventplaceGranada, Españaen_US
dc.relation.eventtitleXXXIII Simposium Nacional de la Unión Científica Internacional de Radio (URSI) 2018en_US
dc.rights.accessRightsopen accessen_US
dc.subjectAnálisis esctructural (Ingeniería) - Métodos matricialesen_US
dc.subjectSistemas de comunicación móvilesen_US
dc.subject.otherMIMOen_US
dc.subject.otherInversión de matricesen_US
dc.subject.otherFPGAen_US
dc.titleInversión aproximada de matrices en sistemas Massive MIMO correlados en tiempo o frecuenciaen_US
dc.typeconference outputen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd1039a04-a518-4e2f-98fb-b666163fc459
relation.isAuthorOfPublicationf4f194c9-ddcb-4b50-abf2-78d6792a5f8f
relation.isAuthorOfPublication.latestForDiscoveryd1039a04-a518-4e2f-98fb-b666163fc459

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Inversor_URSI_2018_final_OCM.pdf
Size:
359.73 KB
Format:
Adobe Portable Document Format
Description: