Multiresolution Layered Manufacturing

Loading...
Thumbnail Image

Files

MLM-post-print.pdf (3.44 MB)

Description: post-print version (after peer review, before copyediting)

Identifiers

Publication date

Reading date

Authors

Fernández-Rodríguez, Jose David
De Coninck, Joël

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Emerald Publishing

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

PURPOSE: Two-photon polymerization (TPP) has become one of the most popular techniques for stereolithography at very high resolutions. When printing relatively large structures at high resolutions, one of the main limiting factors is the printing time. The goal of this work is to present a new slicing algorithm to minimize printing times. DESIGN/METHODOLOGY/APPROACH: Typically, slicing algorithms used for TPP do not take into account the fact that TPP can print at a range of resolutions (i.e. with different heights and diameters) by varying parameters such as exposure time, laser power, photoresist properties, and optical arrangements. This work presents Multiresolution Layered Manufacturing (MLM), a novel slicing algorithm that processes 3D structures to separate parts manufacturable at low resolution from those that require a higher resolution. FINDINGS: MLM can significantly reduce the printing time of 3D structures at high resolutions. The maximum theoretical speed-up depends on the range of printing resolutions, but the effective speed-up also depends on the geometry of each 3D structure. RESEARCH LIMITATIONS/IMPLICATIONS: MLM opens the possibility to significantly decrease printing times, potentially opening the use of TPP to new applications in many disciplines such as microfluidics, metamaterial research or wettability. ORIGINALITY/VALUE: There are many instances of previous research on printing at several resolutions. However, in most cases, the toolpaths have to be manually arranged. In some cases, previous research also automates the generation of toolpaths, but they are limited in various ways. MLM is the first algorithm to comprehensively solve this problem for a wide range of true 3D structures.

Description

Bibliographic citation

Fernandez-Rodriguez, JD; de Coninck, J (2018) Multiresolution Layered Manufacturing. Rapid Prototyping Journal, DOI 10.1108/RPJ-07-2017-0146

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional