Metadomotic Optimization Using Genetic Algorithms

dc.centroEscuela Politécnica Superiores_ES
dc.contributor.authorMerino-Córdoba, Salvador
dc.contributor.authorMartínez-del-Castillo, Javier
dc.contributor.authorGuzmán-Navarro, Francisco
dc.date.accessioned2014-07-17T10:12:52Z
dc.date.available2014-07-17T10:12:52Z
dc.date.created2014-07-16
dc.date.issued2014-07-17
dc.departamentoMatemática Aplicada
dc.description.abstractNew technologies applied in domotic allow us to extract plenty of data about the usual behavior of occupants in any installation. Discipline that works with these data for the pursuit of new knowledge is called Metadomotic. To achieve this learning and relationships between different data, we make use of the tools provided by artificial intelligence. Today the use of these techniques in solving problems is fully extended. Among the best known we will focus on the application of genetic algorithms, technical halfway between biology and mathematics, to try to resolve the issues raised in this paper. This article proposes the classification of domotic parameters to optimize an objective function. In a nutshell we will try two possible applications: 1. The minimization of energy consumption through the classification of the parameters of use and consumption coefficients, inherent to each user and device 2. The maximization of industrial production through the influence of environment parameters Once established several basic suboptimal solutions, they will be combined randomly, through the crossover, mutation and cloning, to try to find the optimal.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttp://hdl.handle.net/10630/7858
dc.language.isoenges_ES
dc.relation.eventdate18 de Junio de 2014es_ES
dc.relation.eventplaceRepública Checaes_ES
dc.relation.eventtitleESCO 2014es_ES
dc.rights.accessRightsopen access
dc.subjectDomóticaes_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subject.otherDomotices_ES
dc.subject.otherMetadomotices_ES
dc.subject.otherEnergy efficiencyes_ES
dc.subject.otherArtificial intelligencees_ES
dc.subject.otherGenetic algorithmses_ES
dc.titleMetadomotic Optimization Using Genetic Algorithmses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication10edaa15-4765-431e-8347-6d1b8c59743f
relation.isAuthorOfPublication6b2cd1bb-2447-4670-97d2-58b8f33b1527
relation.isAuthorOfPublicationf1daa479-c7f6-4167-b217-45170a9439f7
relation.isAuthorOfPublication.latestForDiscovery10edaa15-4765-431e-8347-6d1b8c59743f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MD-AG.pdf
Size:
142.22 KB
Format:
Adobe Portable Document Format