The numerical solution of the Dirichlet generalized and classical harmonic problems for irregular n-sided pyramidal domains by the method of probabilistic solutions
| dc.contributor.author | Zakradze, Mamuli | |
| dc.contributor.author | Tabagari, Zaza | |
| dc.contributor.author | Koblishvili, Nana | |
| dc.contributor.author | Davitashvili, Tinatin | |
| dc.contributor.author | Sánchez-Sáez, José María | |
| dc.contributor.author | Criado-Aldeanueva, Francisco | |
| dc.date.accessioned | 2025-08-29T10:46:40Z | |
| dc.date.available | 2025-08-29T10:46:40Z | |
| dc.date.issued | 2025-08 | |
| dc.departamento | Física Aplicada II | es_ES |
| dc.description.abstract | This paper describes the application of the method of probabilistic solutions (MPS) to numerically solve the Dirichlet generalized and classical harmonic problems for irregular -sided pyramidal domains. Here, "generalized" means that the boundary function has a finite number of first-kind discontinuity curves, with the pyramid edges acting as these curves. The pyramid's base is a convex polygon, and its vertex projection lies within the base. The proposed algorithm for solving boundary problems numerically includes the following steps: a) applying MPS, which relies on computer modeling of the Wiener process; b) determining the intersection point between the simulated Wiener process path and the pyramid surface; c) developing a code for numerical implementation and verifying the accuracy of the results; d) calculating the desired function's value at any chosen point. Two examples are provided for illustration, and the results of the numerical experiments are presented and discussed. | es_ES |
| dc.identifier.citation | Zakradze, M., Tabagari, Z., Koblishvili, N., Davitashvili, T., Sánchez-Sáez, J.-M., & Criado-Aldeanueva, F. (2025). The numerical solution of the Dirichlet generalized and classical harmonic problems for irregular n-sided pyramidal domains by the method of probabilistic solutions. AIMS Mathematics, 10(8), 17657-17671. https://doi.org/10.3934/math.2025789 | es_ES |
| dc.identifier.doi | 10.3934/math.2025789 | |
| dc.identifier.uri | https://hdl.handle.net/10630/39708 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | AIMS Press | es_ES |
| dc.rights | Attribution 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject | Wiener, Integrales de | es_ES |
| dc.subject | Probabilidades | es_ES |
| dc.subject | Dirichlet, Problema de | es_ES |
| dc.subject.other | Dirichlet generalized and classical harmonic problems | es_ES |
| dc.subject.other | Wiener process | es_ES |
| dc.subject.other | Pyramidal domain | es_ES |
| dc.subject.other | Method of probabilistic solution | es_ES |
| dc.title | The numerical solution of the Dirichlet generalized and classical harmonic problems for irregular n-sided pyramidal domains by the method of probabilistic solutions | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 7cbcd798-05b2-4c7f-8392-e02a560ca5a1 | |
| relation.isAuthorOfPublication | f3f75fff-f46a-4faa-9f5b-5e7335ec1062 | |
| relation.isAuthorOfPublication.latestForDiscovery | 7cbcd798-05b2-4c7f-8392-e02a560ca5a1 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.3934_math.2025789.pdf
- Size:
- 319.8 KB
- Format:
- Adobe Portable Document Format
- Description:

