MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis.

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorFernández Vega, Iván
dc.contributor.authorGiannoula, Christina
dc.contributor.authorManglik, Aditya
dc.contributor.authorQuislant-del-Barrio, Ricardo
dc.contributor.authorMansouri-Ghiasi, Nika
dc.contributor.authorGómez-Luna, Juna
dc.contributor.authorGutiérrez-Carrasco, Eladio Damián
dc.contributor.authorPlata-González, Óscar Guillermo
dc.contributor.authorMutlu, Onur
dc.date.accessioned2025-06-16T10:46:53Z
dc.date.available2025-06-16T10:46:53Z
dc.date.issued2024
dc.departamentoArquitectura de Computadoreses_ES
dc.description.abstractTime Series Analysis (TSA) is a critical workload to extract valuable information from collections of sequential data, e.g., detecting anomalies in electrocardiograms. Subsequence Dynamic Time Warping (sDTW) is the state-of-the-art algorithm for high-accuracy TSA. We find that the performance and energy efficiency of sDTW on conventional CPU and GPU platforms are heavily burdened by the latency and energy overheads of data movement between the compute and the memory units. sDTW exhibits low arithmetic intensity and low data reuse on conventional platforms, stemming from poor amortization of the data movement overheads. To improve the performance and energy efficiency of the sDTW algorithm, we propose MATSA, the first Magnetoresistive RAM (MRAM)-based Accelerator for TSA. MATSA leverages Processing-Using-Memory (PUM) based on MRAM crossbars to minimize data movement overheads and exploit parallelism in sDTW. MATSA improves performance by 7.35×/6.15×/6.31× and energy efficiency by 11.29×/4.21×/2.65× over server-class CPU, GPU, and Processing-Near-Memory platforms, respectively.es_ES
dc.description.sponsorshipGobierno de Españaes_ES
dc.description.sponsorshipHigh Performance, Edge And Cloud computing (HiPEAC)es_ES
dc.description.sponsorshipSAFARI Group’s Industrial Partnerses_ES
dc.description.sponsorshipSemiconductor Research Corporationes_ES
dc.identifier.citationIvan Fernandez, Christina Giannoula, Aditya Manglik, Ricardo Quislant, Nika Mansouri-Ghiasi, Juan Gómez-Luna, Eladio Gutiérrez, Oscar G. Plata, Onur Mutlu. MATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis. IEEE Access 12: 36727-36742 (2024)es_ES
dc.identifier.doi10.1109/ACCESS.2024.3373311
dc.identifier.urihttps://hdl.handle.net/10630/38997
dc.language.isoenges_ES
dc.publisherIEEE Computer Societyes_ES
dc.relation.projectIDTIN2016-80920-Res_ES
dc.relation.projectIDUMA18-FEDERJA-197es_ES
dc.rightsAttribution 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectProceso de datoses_ES
dc.subjectDispositivos de almacenamiento de datoses_ES
dc.subjectGestión de memoriaes_ES
dc.subjectAnálisis de series temporaleses_ES
dc.subject.otherTime series analysises_ES
dc.subject.otherProcessing-using-memoryes_ES
dc.subject.otherMemory-boundes_ES
dc.subject.otherEmerging technologiees_ES
dc.titleMATSA: An MRAM-Based Energy-Efficient Accelerator for Time Series Analysis.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc6edf3ab-5134-4c07-943b-bfca90d13f34
relation.isAuthorOfPublicationf3eeec7d-5b4e-4ca9-abad-3cb620f46252
relation.isAuthorOfPublication34b85e22-88ce-4035-a53e-2bafb0c3310b
relation.isAuthorOfPublication.latestForDiscoveryc6edf3ab-5134-4c07-943b-bfca90d13f34

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MATSA_An_MRAM-Based_Energy-Efficient_Accelerator_for_Time_Series_Analysis.pdf
Size:
1.92 MB
Format:
Adobe Portable Document Format
Description:
Artículo principal
Download

Description: Artículo principal

Collections