Attribute implications with unknown information based on weak Heyting algebras

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Keywords

Abstract

Simplification logic, a logic for attribute implications, was originally defined for Boolean sets. It was extended to distributive fuzzy sets by using a complete dual Heyting algebra. In this paper, we weaken this restriction in the sense that we prove that it is possible to define a simplification logic on fuzzy sets in which the membership value structure is not necessarily distributive. For this purpose, we replace the structure of the complete dual Heyting algebra by the so-called weak complete dual Heyting algebra. We demonstrate the soundness and completeness of this simplification logic, and provide a characterisation of the operations defining weak complete dual Heyting algebras.

Description

Bibliographic citation

Cordero, Pablo, Enciso, Manuel, Mora, Ángel, Pérez-Gámez, Francisco (2024), Attribute implications with unknown information based on weak Heyting algebras, Fuzzy Sets and Systems, Volume 490, 2024, 109026, ISSN 0165-0114

Collections

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional