A New Multi-Objective Approach for Molecular Docking Based on RMSD and Binding Energy

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorLópez-Camacho, Esteban
dc.contributor.authorGarcía Godoy, María Jesús
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2016-07-12T12:02:52Z
dc.date.available2016-07-12T12:02:52Z
dc.date.created2016-06
dc.date.issued2016-07-12
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractLigand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.orcidhttp://orcid.org/0000-0001-5580-0484es_ES
dc.identifier.urihttp://hdl.handle.net/10630/11820
dc.language.isoenges_ES
dc.relation.eventdateJunio 2016es_ES
dc.relation.eventplaceTrujillo (España)es_ES
dc.relation.eventtitleAlCoB 2016 (3rd International Conference on Algorithms for Computational Biology)es_ES
dc.rightsby-nc-nd
dc.rights.accessRightsopen accesses_ES
dc.subjectOptimización matemáticaes_ES
dc.subject.otherMolecular Dockinges_ES
dc.subject.otherMulti-Objective Optimizationes_ES
dc.subject.otherNature Inspired Metaheuristicses_ES
dc.subject.otherAlgorithm Comparisones_ES
dc.titleA New Multi-Objective Approach for Molecular Docking Based on RMSD and Binding Energyes_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alcob2016.pdf
Size:
462.39 KB
Format:
Adobe Portable Document Format