DEM-AIA: Asymmetric inclination-aware trajectory planner for off-road vehicles with digital elevation models

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorToscano-Moreno, Manuel
dc.contributor.authorMandow, Anthony
dc.contributor.authorMartínez-Sánchez, María Alcázar
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.date.accessioned2023-05-09T12:30:42Z
dc.date.available2023-05-09T12:30:42Z
dc.date.created2023
dc.date.issued2023
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractPlanning safe and effective trajectories for off-road unmanned ground vehicles (UGV) is a critical Artificial Intelligence (AI) challenge that can benefit from recent advances in digital elevation models (DEM) for readily capturing accurate terrain geometry. Considering path slopes is crucial to preserve stability and assess terrain traversability at feasible speeds to optimize travel time, which is highly dependent on direction (i.e., pitch and roll). In this article, we propose a new DEM-based asymmetric inclination-aware (DEM-AIA) trajectory planner for ground vehicles. The planner is an any-angle variant of the A⋆ algorithm that computes pitch and roll estimations for each segment crossing cell triangles in the line-of-sight. Furthermore, we define a non-linear velocity constraints function that integrates information about tip-over safety limitations, maximum uphill and downhill slopes for the vehicle, and asymmetric modulation of nominal flat-ground velocity for all pitch and roll combinations. The planner produces a time sub-optimal trajectory with feasible speed references for each segment crossing a cell triangle. Moreover, we provide an extensive experimental analysis of inclination-aware performance on simulated and real-world DEMs as well as a comparison with state-of-the-art path planners adapted to travel-time optimization. An executable version of the planner with parameterizable variations is publicly available.es_ES
dc.description.sponsorshipThis work has been partially funded by the Spanish projects RTI2018-093421-B-I00 and PID2021-122944OB-I00. The first author is partially supported by predoctoral grant BES-2016-077022 (Spanish Ministry of Science and Innovation, co-financed by the European Social Fund). Funding for open access charge: Universidad de Málaga / CBUA. The authors are grateful to ATyges Ingeniería (Málaga, Spain) for providing aerial photogrammetry. Finally, we acknowledge the support from our colleagues of the UMA Robotics and Mechatronics Group.es_ES
dc.identifier.citationToscano-Moreno, Mandow, A., Martínez, M. A., & García-Cerezo, A. (2023). DEM-AIA: Asymmetric inclination-aware trajectory planner for off-road vehicles with digital elevation models. Engineering Applications of Artificial Intelligence, 121. https://doi.org/10.1016/j.engappai.2023.105976es_ES
dc.identifier.doi10.1016/j.engappai.2023.105976
dc.identifier.urihttps://hdl.handle.net/10630/26534
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.referenceshttps://hdl.handle.net/10630/39709
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVehículos autodirigidoses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subject.otherPath planninges_ES
dc.subject.otherUnmanned ground vehiclees_ES
dc.subject.otherDigital elevation modeles_ES
dc.subject.otherInclination awarenesses_ES
dc.titleDEM-AIA: Asymmetric inclination-aware trajectory planner for off-road vehicles with digital elevation modelses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication5f0a1dda-1e55-4bcd-b78a-7af23b346a79
relation.isAuthorOfPublicationf92173bb-8aa3-4cda-b73f-f253a9316d4f
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication.latestForDiscovery5f0a1dda-1e55-4bcd-b78a-7af23b346a79

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0952197623001604-main.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:

Collections