Model-agnostic local explanation: Multi-objective genetic algorithm explainer

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorNematzadeh, Hossein
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorHurtado-Requena, Sandro José
dc.contributor.authorAldana-Montes, José Francisco
dc.contributor.authorNavas-Delgado, Ismael
dc.date.accessioned2024-11-27T12:57:00Z
dc.date.available2024-11-27T12:57:00Z
dc.date.issued2024
dc.departamentoInstituto de Tecnología e Ingeniería del Software de la Universidad de Málaga
dc.description.abstractLate detection of plant diseases leads to irreparable losses for farmers, threatening global food security, economic stability, and environmental sustainability. This research introduces the Multi-Objective Genetic Algorithm Explainer (MOGAE), a novel model-agnostic local explainer for image data aimed at the early detection of citrus diseases. MOGAE enhances eXplainable Artificial Intelligence (XAI) by leveraging the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with an adaptive Bit Flip Mutation (BFM) incorporating densify and sparsify operators to adjust superpixel granularity automatically. This innovative approach simplifies the explanation process by eliminating several critical hyperparameters required by traditional methods like Local Interpretable Model-Agnostic Explanations (LIME). To develop the citrus disease classification model, we preprocess the leaf dataset through stratified data splitting, oversampling, and augmentation techniques, then fine-tuning a pre-trained Residual Network 50 layers (ResNet50) model. MOGAE’s effectiveness is demonstrated through comparative analyses with the Ensemble-based Genetic Algorithm Explainer (EGAE) and LIME, showing superior accuracy and interpretability using criteria such as numeric accuracy of explanation and Number of Function Evaluations (NFE). We assess accuracy both intuitively and numerically by measuring the Euclidean distance between expert-provided explanations and those generated by the explainer. The appendix also includes an extensive evaluation of MOGAE on the melanoma dataset, highlighting its versatility and robustness in other domains. The related implementation code for the fine-tuned ResNet50 and MOGAE is available at https://github.com/KhaosResearch/Plant-disease-explanationes_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUA . This work has been partially funded by grants PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation) and QUAL21 010UMA (Junta de Andalucía). Ies_ES
dc.identifier.citationHossein Nematzadeh, José García-Nieto, Sandro Hurtado, José F. Aldana-Montes, Ismael Navas-Delgado, Model-agnostic local explanation: Multi-objective genetic algorithm explainer, Engineering Applications of Artificial Intelligence, Volume 139, Part B, 2025, 109628, ISSN 0952-1976, https://doi.org/10.1016/j.engappai.2024.109628es_ES
dc.identifier.doihttps://doi.org/10.1016/j.engappai.2024.109628
dc.identifier.urihttps://hdl.handle.net/10630/35359
dc.language.isospaes_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProgramación genética (Informática)es_ES
dc.subject.otherCitrus diseaseses_ES
dc.subject.otherMulti-objective genetic algorithm explaineres_ES
dc.subject.otherNon-dominated Sorting Genetic Algorithm IIes_ES
dc.subject.otherResidual network 50 layerses_ES
dc.subject.otherLocal Interpretable Model-agnostic Explanationses_ES
dc.subject.otherMelanoma detectiones_ES
dc.titleModel-agnostic local explanation: Multi-objective genetic algorithm explaineres_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication.latestForDiscovery04a9ec70-bfda-4089-b4d7-c24dd0870d17

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S095219762401786X-main.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
Description:

Collections